

Mineral Occurrence Revenue Estimation & Visualization Tool

A System for Evaluating Potential Revenue and Carbon Emissions from Mineral Resources for Existing and Expanded Rail Networks in the Alaska - Northwest Canada region

Colin Brooks, MTRI Paul Metz, UAF Robert Shuchman, MTRI Michael Billmire, MTRI Helen Kourous-Harrigan, MTRI

September 2011

Depent Typ Posphyry I and Singe	n Cu Mo deposit (Cos r, 1906; mode	One Conena Cu	d)		(CO) Annoration
Tonnage d	Sinalar Deposit Types			- Li	ication
Tannes	10%-tile	50 % tile	905-tie	La	t 63.69
8 1	120,000,000	500,000,000	2,100,000,	.000 Q.	astargle Ti
ExpectedV	ake IUS and CA dollar	4			
	GMV 102-8e	GMV 50 %	486 GMV 9	(O) the	
\$USD	\$6.42 hil.	\$85.3	30 bil. \$	1.22 tril.	
\$CAD	\$6.95 64	\$92.3	юы. \$	1.32 tril.	
	No of Mirve (50% kile) 3	7.S		Price	yesar: [2001
Deposit Attr Land Status		Land D	eposits w/m 20km	3	Load Costs
Deposit Typ			istance to Rai (m)		Soenario
		ospect	Existing	g 162.3	(

www.mtri.org www.mtri.org/mineraloccurrence.html

MorevT_AEG_NTC_Sept2011_v2.ppt

Presentation Outline

- Background & Motivation
- Current Capabilities & Upcoming Developments
- Screen Shot Demo
- Tool Methodology
 - Revenue Estimation Methodology
 - Calculation of Gross Metal Value
 - Estimation of potential freight volumes
 - Cost Estimation Methodology
 - Capacity, Mining cost (Capital Expense, Operating)
 - Transportation cost (multimodal)
 - Carbon Accounting: Transportation Carbon Accounting Module (TCAM)
 - Rail, Truck, Waterborne (OGV & barge)
 - Dynamic Network Routing Module

Detailed Screen Shot Walk-through

- Visualization examples
- Step-by-step tool usage

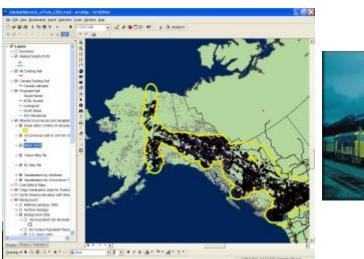
Presentation Outline

Background & Motivation

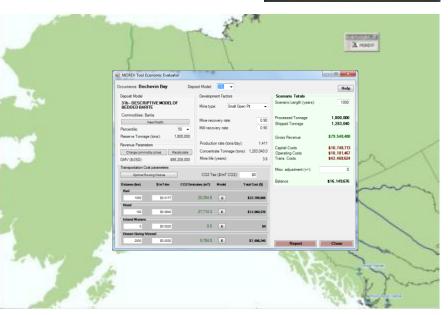
- Current Capabilities & Upcoming Developments
- Screen Shot Demo
- Tool Methodology
 - Revenue Estimation Methodology
 - Calculation of Gross Metal Value
 - Cost Estimation Methodology
 - Capacity, Mining cost (Capital Expense, Operating)
 - Transportation cost (multimodal)
 - Carbon Accounting: Transportation Carbon Accounting Module (TCAM)
 - Rail, Truck, Waterborne (OGV & barge)
 - Dynamic Network Routing Module

Detailed Screen Shot Walk-through

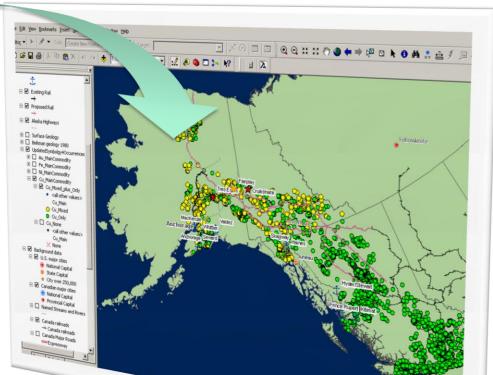
- Visualization options
- Step-by-step tool usage



MOREV: Purpose



- Provide **GIS-based visualization** for decision makers to **evaluate revenue potential** from **mineral exploitation** in **Alaska**, **Yukon**, and **BC**
 - Especially in light of new proposed & potential rail transportation links


MOREV: Background

Starting point: Gross Metal Value of Identified Major Mineral Occurrences in ARR Extension Corridor in Alaska (P. Metz, full ARDF version, revised 2010 from 2007 ACRL Phase I study)

 Carronality
 Value
 Carronality
 Value
 Carronality
 Carro

...but, to be useful it is desirable to make resource databases available to more users in **resource development & transportation** communities, so...

...we implemented Metz's methodology into ARDF, BC mine file, and Yukon mine file, allowing new ways of exploring scenarios for mineral resources & transportation networks

MOREV: Key Points

- Spatializing the mineral occurrence database allows integration of disparate data important to resource development & transportation decision makers, example uses:
 - → Calculate potential revenue & freight volumes from occurrences within 100-km of a proposed transport link
 - → Visualize proximity to existing infrastructure, historic mines, nearby deposits
 - \rightarrow Visualize land use patterns, watersheds, political boundaries
 - → Track CO2 in transportation segment for a proposed mine
 - → Calculate and visualize most efficient multi-modal transportation route.
- Sensitivity analyses can be performed, for example:
 - Transportation costs with and without a new rail link
 - Carbon impact of multimodal routing options (truck/rail/OGV)
- Inputs and assumptions are transparent to and modifiable by the user
 - e.g. modal shift costs, carbon cost per ton-mile, port charges, mineral occurrence tonnage, costs per ton-mile, commodity price, mine recovery rate, etc.
- Occurrence data are updateable

- Small to midsized exploration interests in pre-feasibility stages of project planning for new mining projects
- Transportation & infrastructure planners
 - State & local government
- Potential for helping in permitting process
 - Example: Preparation of NI 43-101 mineral project disclosures in Canada
- Government agencies & resource database maintainers
- Investment community & lenders
- Researchers (geological, transportation, economic, etc.)

Presentation Outline

- Background & Motivation
- Current Capabilities & Upcoming Developments
- Screen Shot Demo
- Tool Methodology
 - Revenue Estimation Methodology
 - Calculation of Gross Metal Value
 - Cost Estimation Methodology
 - Capacity, Mining cost (Capital Expense, Operating)
 - Transportation cost (multimodal)
 - Carbon Accounting: Transportation Carbon Accounting Module (TCAM)
 - Rail, Truck, Waterborne (OGV & barge)
 - Dynamic Network Routing Module
- Detailed Screen Shot Walk-through
 - Visualization options
 - Step-by-step tool usage

MOREV: Current Capabilities

Database Linkage

- Gross Metal Value can be automatically calculated for any collection of mineral deposits with a valid USGS Deposit Model
 - Currently applies to **67%** of ALL metallic mineral occurrences in the combined ARDF, BC, and Yukon mine files (**73%** of ARDF occurrences)
 - We have added functionality so that the **user can select/change a deposit model** for the occurrences with unidentified deposit types

Scenario Evaluation

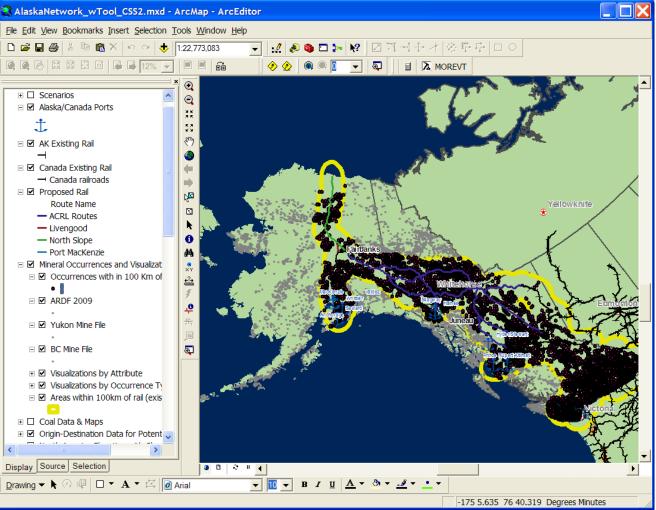
- Calculates and displays mine capacity (tons/day) based on Modified Taylor Rule (updated by Long 2009)
 - From this value, calculate Mine Capital Expense and Mine Operating Cost
 - Researching implementation of SEE software more advanced costing
- Dynamically calculates optimal route from mineral occurrence to user-chosen destination based on transportation costs
 - Derives total multi-modal **transportation cost** and **carbon emissions** associated with transporting minerals along the calculated route

Presentation Outline

- Background & Motivation
- Current Capabilities & Upcoming Developments

Screen Shot Demo

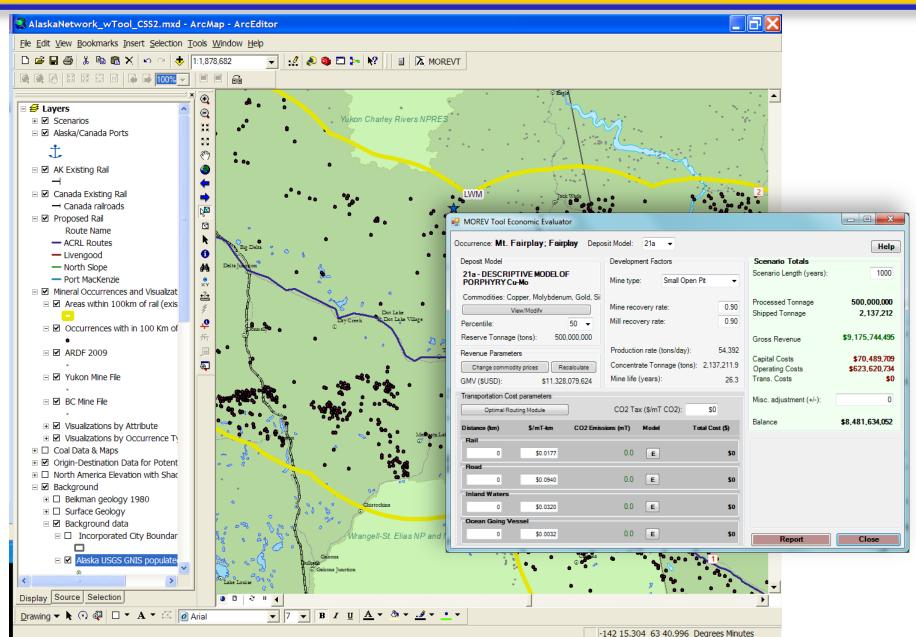
- Tool Methodology
 - Revenue Estimation Methodology
 - Calculation of Gross Metal Value
 - Cost Estimation Methodology
 - Capacity, Mining cost (Capital Expense, Operating)
 - Transportation cost (multimodal)
 - Carbon Accounting: Transportation Carbon Accounting Module (TCAM)
 - Rail, Truck, Waterborne (OGV & barge)
 - Dynamic Network Routing Module
- Detailed Screen Shot Walk-through
 - Visualization options
 - Step-by-step tool usage



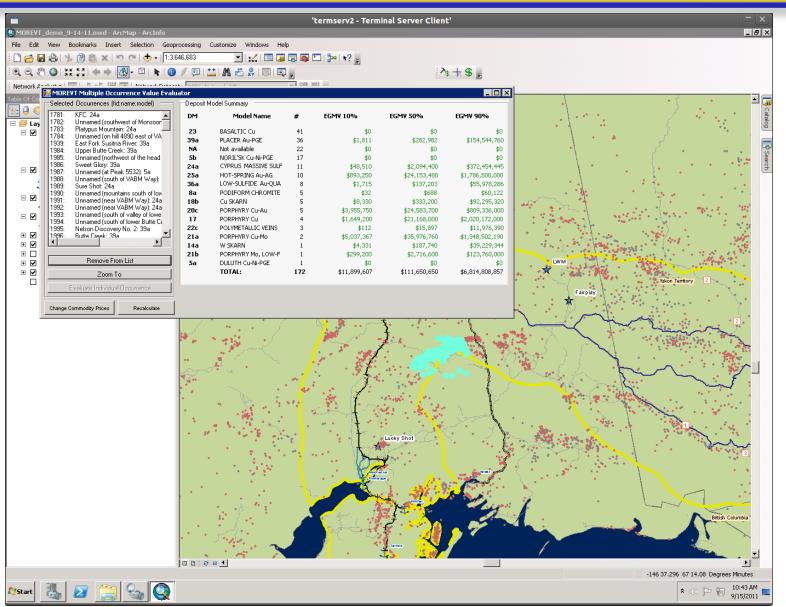
MOREV Workflow Details: Example Scenario Setup

User visualization of geographic context of candidate mineral occurrences (ACRL corridor as well as all AK, Yukon, BC)

- Proximity to existing + proposed rail/road/grid infrastructure
- Transport distance/route selection to port
- Proximity to candidate mineral occurrences, known deposits, existing/historic mines
- Map display options: (examples next page)
- In-corridor occurrences
- Gross Metal Values*
- Deposit Type
- Commodity groupings



*P. Metz. UAF


Example Single Mineral Occurrence Selection

Example Multiple Mineral Occurrence Selection

New functionality added to MOREV tool in 2011; expanded help as well

ASK

Presentation Outline

- Background & Motivation
- Current Capabilities & Upcoming Developments
- Screen Shot Demo
- Tool Methodology
 - Revenue Estimation Methodology
 - Calculation of Gross Metal Value
 - Cost Estimation Methodology
 - Capacity, Mining cost (Capital Expense, Operating)
 - Transportation cost (multimodal)
 - Carbon Accounting: Transportation Carbon Accounting Module (TCAM)
 - Rail, Truck, Waterborne (OGV & barge)
 - Dynamic Network Routing Module
- Detailed Screen Shot Walk-through
 - Visualization options
 - Step-by-step tool usage

- Calculation of Gross Metal Value
 - Tonnage from USGS Mineral Deposit Models for occurrence (after Cox & Singer); or user can input known or measured tonnages and commodity prices
- Installation and operating cost estimates from statistical models from historical economic mines (after USGS, Camm)
- Multimodal transportation costs of shippable tonnage derived from US Transportation Statistics database

Parameters are user-updateable

Revenue Estimation Methodology:

- Multiplier effect in local economy new wealth generation from development of mineral resources
- Fort Knox Gold Mine \$104 million per year during 12 year estimated life of mine
 - 1999 Information Insights report for the Fairbanks North Star Borough
 - Through multiplier effect wages, supplies, property taxes, reduced energy costs
- Estimated GMV = \$1.2 billion
- The value to communities of mineral resource development can be equal to the GMV

Carbon Accounting

Transportation Carbon Accounting Module (TCAM)

- TCAM

Consumptio

Fuel cons

- Rail, truck, barge, and OGV (ocean going vessel) emissions models (based on fuel usage estimates) are incorporated
- Mode-specific calculator forms show model assumptions and allow usermodification of default parameters
- Interacts with dynamic routing module to enable user to select most carbon efficient shipping logistics route
- **CO2 equivalent** (which includes:CO2, CH4, and N2O) values are used
- Sources for fuel consumption/emissions model data:
 - Rail: Association of American Railroads, US EPA
 - Truck: USDOT Federal Highway Administration, Vehicle Inventory and Use Survey (VIUS) 2002, US EPA
 - Water: MAN Diesel, European Environment Agency, US EPA, ICF International, Lloyd's Register

			🖳 TC	AM - Road	
			Vehi	cle Specifications	3
			Truc	k type: 53' Tra	actor Trailer
ssions parameters			Vehi	cle weight (mT):	25
(g): 2.6681			-Cons	sumption/emission	ns parameters
n / mT-km (L): 0.005946				2/Ldiesel(kg):	2.6
g): 15.86					
Save and Close			Fuel	consumption (ki	m/L): 2.0
TCAM - Water Freight Transpo	ort		CO	2 / mT-km (g):	216.0
External Inputs	Eng	ines		-	
One-way distance (km):	1000		Ma	Reset	Save and Close
-	Nun	nber:		3	
Ship type: Bulk Carrier	▼ Тур		SSD 👻	MSD -	
Ship size (name): Panamax		I type:	RO 👻	MD 👻	
ShipsSize (dwt):	72,500 Pow	er (kW/engine)	10,410	612	
Operating Modes	Hotelling	Maneuver	RSZ	Cruise	
Average speed (km/hr):	0.0	9.3	20.2	26.9	
Time in mode (hr):	40	1	2	21.1	
Loading Factors					
Main engine:	0	0.2	0.4	0.8	
Aux. engine(s):	0.22	0.45	0.27	0.17	
Total kWh		2,000	0.000	224.070	
Main engine:	0 12.485	2,080 918	8,320 918	234,079 5.036	
Aux. engine(s):	12,480	218	318	5,036	
CO2 eq. emission rate (g/kWh) Main engine:	0	682	620	620	
Aux. engine(s):	690	717	652	652	
Total CO2 eq. emissions (kg)					
Main engine:	0	0	5,159	145,129	
Aux. engine(s):	8,615	633	599	3,284	
CO2 emissions, all modes Total per trip g / m	T-km		Save	e and Close	
	2.2540				
103,410 2.2340				Reset	

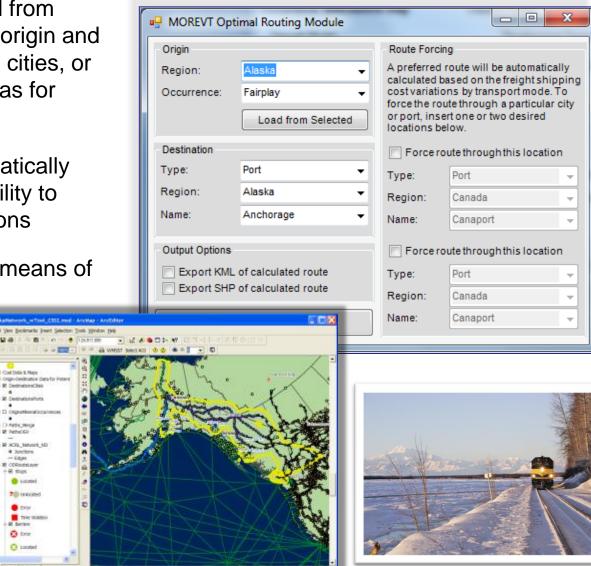
Dynamic Network Routing Users can choose origins & destinations

- Routing is dynamically calculated from user-defined mineral occurrence origin and specified destination points (port, cities, or facilities; U.S., Canada or overseas for destination)
- Most cost efficient route is automatically chosen, but user will have the ability to force route through certain locations
- Can select most carbon-efficient means of shipping mineral concentrates

D Patter Mado 18 AutoDC

4 Junctory - Edoer 20 CORstatute

> Locates 7.8 unpate


> > Trine lace

......

· · · · · · · · · · · · ·

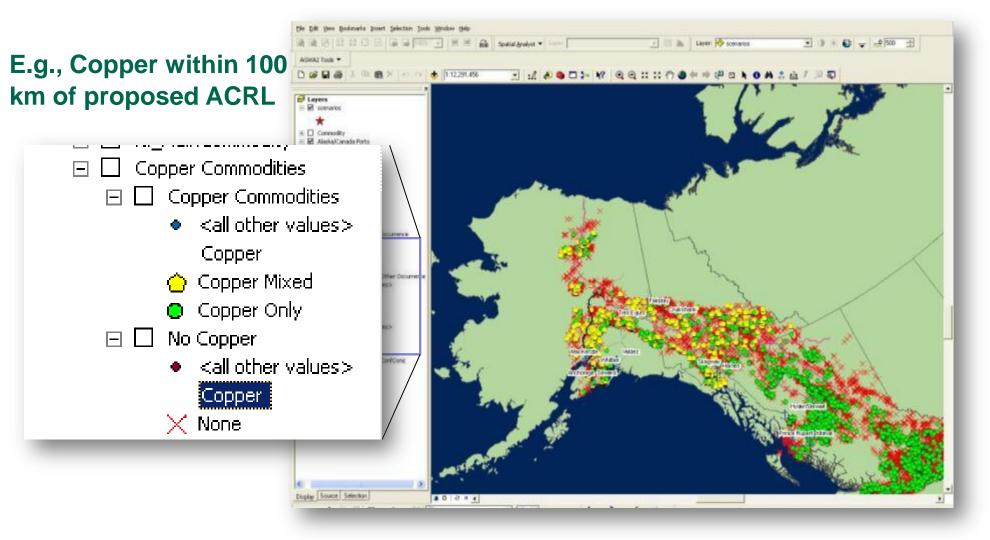
C Int C LOOM

Modal distances and intermodal transition points that were calculated will be loaded directly into the transportation costing calculations w/ option for exported KML visualization of route as well

Presentation Outline

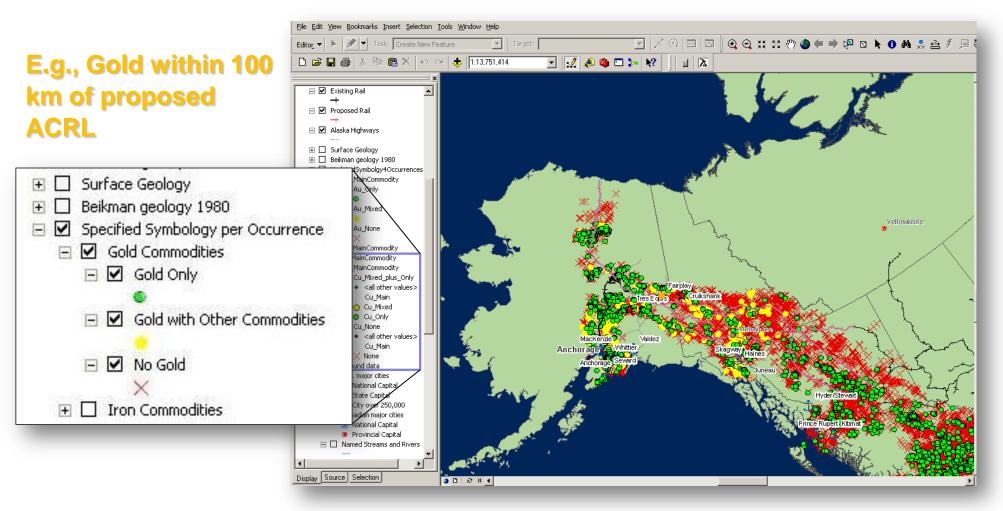
- Background & Motivation
- Current Capabilities & Upcoming Developments
- Screen Shot Demo
- Tool Methodology
 - Revenue Estimation Methodology
 - Calculation of Gross Metal Value
 - Cost Estimation Methodology
 - Capacity, Mining cost (Capital Expense, Operating)
 - Transportation cost (multimodal)
 - Carbon Accounting: Transportation Carbon Accounting Module (TCAM)
 - Rail, Truck, Waterborne (OGV & barge)
 - Dynamic Network Routing Module

Detailed Screen Shot Walk-through


- Visualization options
- Step-by-step tool usage

Map Display Examples

Allow Filtering by Attribute, Commodity Type



Map Display Examples

Allow Filtering by Attribute, Commodity Type

Transportation expense calculation: Freight volumes

- Freight volume is estimated from concentrate tonnage (which is dependent on reserve tonnage, commodity grades, and mine and mill recovery rates; deposit model) and distance traveled for each of four transportation modes: Rail, Road, Inland Water, and Ocean Going Vessel
 - We calculate daily freight volume of concentrate (& summarize as total shippable tonnage)

Processed Tonnage	1,800,000
Shipped Tonnage	1,283,040

Cost per revenue tonne-kilometer for each mode were derived from literature review of Bureau of Transportation Statistics publications

Transportation Expenses & Dynamic Routing Form

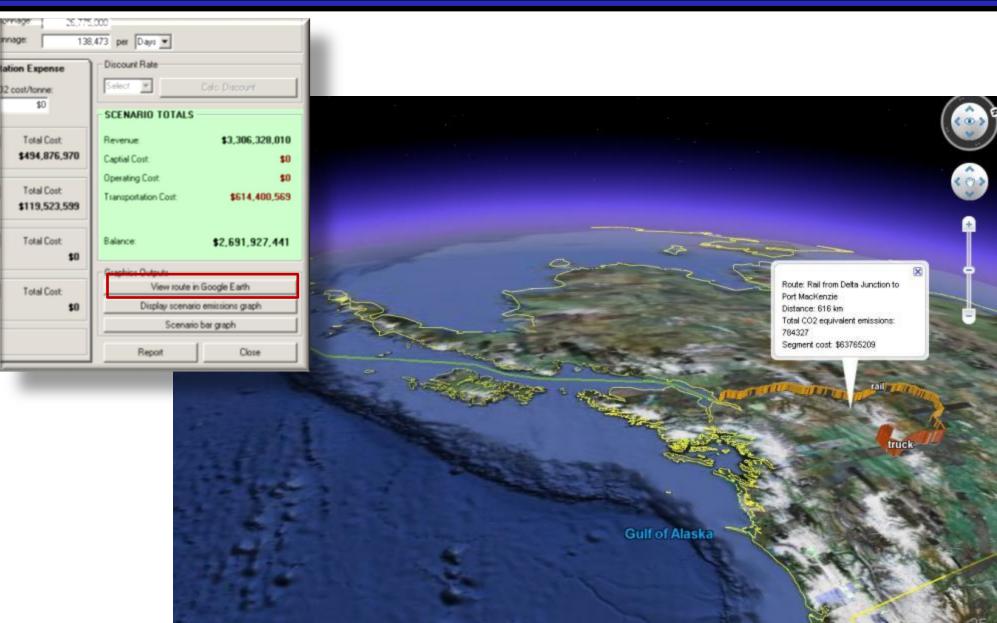
Transportation expense calculation: Routing

The user can choose to use a ore destination and route	a preset or can set their	own	
Transportation Cost parameters Optimal Routing Module Distance (km) Rail 1000 \$0.0177 Road	CO2 Tax (\$/mT CO2): MOREVT Optimal Routing Module Origin Region: Alaska Occurrence: Fairplay	SO Route Forcing A preferred route will be automatically calculated based on the freight shipping cost variations by transport mode. To	This routing module will automatically calculate a route the minimizes transportation costs.
100 \$0.0940 Inland Waters 0 \$0.0320 Ocean Going Vessel	Load from Selected Destination Type: Port Region: Alaska	force the route through a particular city or port, insert one or two desired locations below. Force route through this location Type: Port Region: Canada	The user can also force the route through a particular port or city if desired.
2000 \$0.003	Name: Anchorage - Output Options Export KML of calculated route Export SHP of calculated route Calculate Route	Name:CanaportForce route through this locationType:PortRegion:CanadaName:Canaport	

Transportation expense calculation: CO₂ emissions

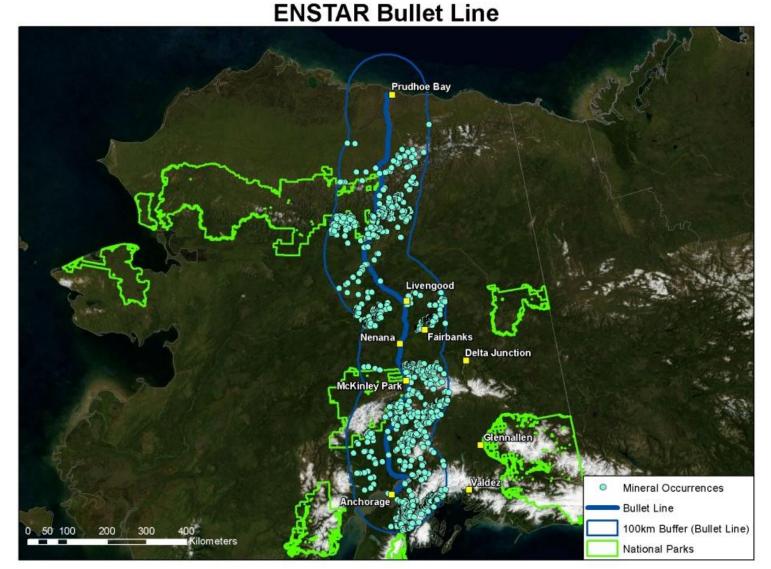
Total CO_2 equivalent emissions for each transportation mode are calculated from mode-specific emissions models, with the option to set an offset price that will be incorporated into transportation costs

Mode-specific emissions calculators have been incorporated so that users can modify default parameters


100 50.0940 46,166 E M Inland Waters Caroli Sterio	ransportation Co Optimal Ro	uting Module] CO2	Price (\$/mT C	O2) \$0				Vehicle Spe		
Rail Consumpton (mission) Consumpton (mi) istance (km)	\$/mT-km	CO2 Emissions (mT)	Model	Total Cost (5)						r Trailer
500 0.04 16.948 Image: Comparison of the state o									CO2 /L dies	sel (kg):	
Road CO2/L disel (kg): Fuel communitor/ mT-Km (L): CO2/mT-Km (g): Edent HpAL: Fuel communitor/ mT-Km (L): CO2/mT-Km (g): Edent HpAL: Fuel communitor/ mT-Km (L): CO2/mT-Km (g): Edent HpAL: Fuel communitor/ mT-Km (L): CO2/mT-Km (g): Fuel communitor/ mT-Km (g): So substatic (d): Fuel communitor/ mT-Km (g): Substatic (d): Fuel communitor/ mT-Km (500	0.04	16,948	E): 2
100 \$0.0940 46,165 E Term Term Fuel System SSD MSD Inland Waters 0 \$0.0320 0 E \$00 <td>Road</td> <td></td> <td></td> <td></td> <td>CO2 / L diesel (kg):</td> <td>External Inputs</td> <td></td> <td>Engines</td> <td>Rese</td> <td></td> <td>Save and Clo</td>	Road				CO2 / L diesel (kg):	External Inputs		Engines	Rese		Save and Clo
Inland Waters Opening Mode Note Note 0 \$0.0320 0 E \$0 Ocean Going Vessel 50.0031 4,817 E \$56,825,357 1000 \$0.0031 4,817 E \$56,825,357 Main engine: 0 2,260 63,30 24,00 Main engine: 0 6,260 63,30 24,00 Main engine: 0 6,260 6,30 24,00 Main engine: 0 6,260 6,30 24,00 Main engine: 0 6,260 6,30 24,00 Main engine: 0 6,260 6,20 6,20 Main engine: 0 6,20 6,20 6,20 Main engine: 0 6,20 6,20 6,20 Main engine: 0 6,20 6,20 6,20 Main engine: 0 0 5,159 1,51 Main engine: 0 0 5,159 1,51	100	\$0.0940	46,166	E	Si		• 1	Туре:	SSD 👻	MSD 👻	
0 \$0.0320 0 E \$0 \$0 \$3 202 28 0 \$0.0320 0 E \$0 \$0 \$1 2 21 0 \$0.0320 0 E \$0 \$0 \$23 202 28 0 \$0.0320 0 E \$0 \$0 \$2 </td <td>Inland Waters</td> <td></td> <td></td> <td>\langle</td> <td></td> <td></td> <td>12,000</td> <td></td> <td></td> <td>612</td> <td></td>	Inland Waters			\langle			12,000			612	
Ocean Going Vessel Ax. engine(s): 0.22 0.45 0.27 0.1 1000 \$0.0031 4,817 E \$6,525,357 12,485 918 50 027 0.1 Main engine: 0 2,000 8,320 234,00 10 56,525,357 12,485 918 50 CO2eq.emission rate (gNM) Min engine: 0 662 620 620 622 645 620<	0	\$0.0320	0	E	50	Time in mode (hr):	0.0	9.3	20.2	26.9 21.1	
1000 \$0.0031 4.817 E \$6.25.357 Aux engine(\$): 12.485 918 918 5.0 CO2eq.emission.rde.(gkWh) Main engine: 0 682 620 622 620 622 620 622 620 622 620<	Ocean Going Ve	essel				Main engine: Aux. engine(s):				0.8	
Aux. engine(s): 690 717 652 663 Total CO2.eq. emissions (kg) Main engine: 0 0 5,159 145,15	100þ	\$0.0031	4,817	E	\$6,625,357	Aux. engine(s): CO2 eq. emission rate (g/kWh)	12,485	5 918	918	234,079 5,036	
	-					Aux. engine(s): Total CO2 eq. emissions (kg)	690	717	652	620 652 145,129	
CO2 emissions, all modes Total per trip g / mT-km Save and Close						Aux. engine(s): CO2 emissions, all modes	8,615		599	3,284	

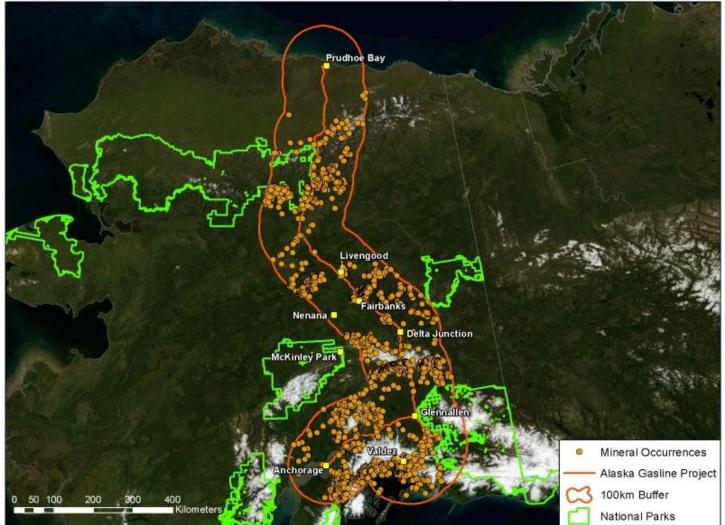
Michigan

Research Institute



Scenario: Alternative Pipeline Route

Research Institute



Proposed Bullet Line (from Prudhoe Bay to Anchorage) with mineral occurrences within 100-kilometers of pipeline.

Alaska Gasline Project

Proposed Alaska Pipeline Project (from Prudhoe Bay to Valdez) with mineral occurrences within 100-kilometers of pipeline.

Pipeline Scenario: Potential Revenue Evaluation

Tabulated Estimated Gross Metal Value (EGMV) statistics for mineral resources in100-km pipeline corridor

- EGMV: GMV x Probability of Development (Metz) – 0.001 for 10th & 50th percentile, 0.0005 for 90th

	Alaska Pipeline Project	- Updated 11/2/20	10 wit	h Development	Probability	
Model Code	Name	Metals	Amt	GMV (10th Perc.)	GMV (50th Perc.)	GMV (90th Perc.)
10	Carbonatite	Niobium - Rare Earth	1	\$771,795,431	\$9,329,300,739	\$38,420,308,164
26a	Carbonate-Hosted Au-Ag	Au-Ag	1	\$277	\$4,707	\$33,641
27b	Almaden Hg	Hg	1	\$0	\$0	\$0
30a	Sandstone-Hosted Pb-Zn	Pb-Zn-Ag	1	\$9,896	\$304,823	\$4,793,022
31b	Bedded Barite	Barite	1	\$1,489	\$30,713	\$260,597
38a	Lateritic Ni	Ni-Co	1	\$1,247,069	\$9,779,654	\$38,216,657
39b	Placer PGE-Au	Pt-Au-Os-Ir-Pl	1	\$157	\$11,918	\$253,611
9	Alaskan PGE and Epiterthermal Veins	Pt	1	\$0	\$0	\$0
14b	Sn Skarn	Sn	2	\$45,007	\$630,525	\$4,768,965
15b	Sn Veins	Sn	2	\$1,818	\$67,510	\$1,119,755
25g	Epithermal Mn	Mn	2	\$2,523	\$39,424	\$275,968
39c	Shoreline Placer Ti	Zr-Ti	2	\$149,486	\$7,742,151	\$152,147,019
6a	Komatitic Ni-Cu	Ni-Au-Cu	2	\$31,998	\$540,902	\$6,552,870
15c	Sn Greisen	Sn	3	\$44,141	\$654,326	\$4,957,754
20b	Sn-polymetallic veins	Au-Ag-Pb-Zn	3	\$0	\$0	\$0
32a	Mississippi Valley Zn-Pb	Pb-Zn	3	\$0	\$0	\$0
24c	Volcanogenic Mn	Mn	4	\$7,065	\$207,528	\$2,343,891
31a	Sedimentary Exhalative Zn-Pb	Zn-Pb	4	\$469,315	\$9,963,579	\$106,186,580
18a	Porphyry Cu Skarn	Cu-Ag-Au-Mo	5	\$3,135,635	\$23,837,669	\$90,867,849
8d	Serpentine-Hosted Asbestos	Asbestos	6	\$61,078	\$588,154	\$2,950,605
18d	Fe Skarn	Fe	7	\$654,326	\$19,828,066	\$277,592,918
19a	Polymetallic Replacement	Pb-Zn-Cu-Ag-Au	7	\$57,062	\$1,872,126	\$30,815,076
18c	Zn-Pb Skarn	Zn-Pb-Cu	8	\$72,529	\$1,594,558	\$17,322,805
21a	Porphyry Cu-Mo	Cu-Mo-Au-Ag	8	\$15,788,676	\$110,237,308	\$397,001,891
21b	Porphyry Mo, Low F	Мо	9	\$1,789,382	\$16,246,773	\$74,015,336
25a	Hot Spring Au-Ag	Au-Ag	12	\$0	\$0	\$0
17	Porphyry Cu	Cu-Ag-Au-Mo	19	\$6,709,091	\$86,823,819	\$632,182,850
34c	Phosphates	P2O5-P	19	\$0	\$0	\$0
20c	Porphyry Cu-Au	Cu-Au-Ag-Mo	23	\$11,927,285	\$67,332,511	\$202,579,108
14a	W Skarn	W	24	\$9,738	\$422,162	\$8,821,286
24b	Besshi Massive Sulphide	Cu-Ag-Au-Pb-Zn	28	\$13,550	\$574,074	\$11,034,567
8a	Podiform Chromite	Cr	33	\$82,492,478	\$10,453,592,312	\$59,085,521,764
18b	Cu Skarn	Cu-Ag-Au	34	\$35,981	\$1,442,311	\$27,864,929
27d	Simple Sb Deposits	Sb-Ag-Au	34	\$138	\$7,222	\$186,206
5b	Noril'sk Cu-Ni-PGE	Au-Pd-Pt	50	\$0	\$0	\$0
24a	Cyprus Massive Sulphide	Cu-Ag-Au-Pb-Zn	52	\$206,510	\$8,853,963	\$115,958,480
28a	Kuroko Massive Sulphide	Cu-Pb-Zn-Au-Ag	79	\$344,782	\$14,664,440	\$285,809,883
23	Basaltic Copper	Au-Ag-Cu-Ni-Zn-Co	88	\$0	\$0	\$0
22c	Polymetallic Veins	Ag-Au-Pb-Zn-Cu	115	\$1,596	\$152,342	\$7,481,083
36a	Low Sulfide Au-Quartz Veins	Au-Ag	367	\$591	\$47,265	\$6,399,194
	No Description		405	\$0	\$0	\$0
39a	Placer Au-PGE	Au-Ag	520	\$3,309	\$39,426	\$2,150,505
	TOTALS		1987	\$897,109,410	\$20,167,434,999	\$100,018,774,830

Contact Information

Colin Brooks

MTRI Research Scientist & Environmental Science Lab Manager <u>colin.brooks@mtu.edu</u> Phone 734-913-6858 Fax 734-913-6880

Robert Shuchman, Ph.D.

MTRI Co-Director <u>shuchman@mtu.edu</u> Phone 734-913-6860

Michigan Technological University

Paul Metz, Ph.D.

Professor, P.E., Geological Engineering University of Alaska Fairbanks

ffpam@uaf.edu Phone: (907) 474-6749 http://www.alaska.edu/uaf/cem/ge/people/metz.xml

www.mtri.org www.mtri.org/mineraloccurrence.html

References

- Alaska Canada Rail Link Project. 2007. "Rails to Resources to Ports." ACRL Phase I Feasibility Study. ALCAN RaiLink Inc., Whitehorse, Yukon.
- "Expanding Alaska–Canada Rail: Jointly Visualizing Revenue Freight, Development Cost, Mineral Commodity Value, and Carbon Dioxide Impacts," Brooks, Billmire, Dobson, Kourous-Harrigan, Keefauver, Michigan Tech Research Institute, for publication in the Transportation Research Record.
- Ballou, R. 1998. Business Logistics Management, 4th Edition, Upper Saddle River, NJ: Prentice Hall.
- Camm, T. W. 1991. "Simplified cost models for prefeasibility mineral evaluations." Information Circular 9298, U.S. Department of the Interior Bureau of Mines.
- Cox & Singer Mineral Deposit Models <u>http://pubs.usgs.gov/of/2004/1344/mainfrms.htm</u>

A Test and Re-Estimation of Taylors Empirical Capacity–Reserve Relationship, Keith R. Long Natural Resources Research, Vol. 18, No. 1, March 2009 (2009)

References, Cont'd

- MAGORMINRailExenCompleteV2.xls (Metz Spreadsheet)
- Gartner Lee report: http://alaskacanadarail.com/documents/WPA2/WPA2a%20traffic_data_developmen t_mineral_resources2006_04_18.pdf
- A simplified economic filter for open-pit gold-silver mining in the United States, Singer, Menzie, David, Long, USGS Opefile report 98207, 1998
- Course materials website, Prof. Bradley Paul
- Singer, Introduction to Quantitative Mineral Resource Assessments and Required Deposit Models <u>http://pubs.usgs.gov/of/2007/1434/1_Introduction_and_models.pdf</u>
- QCI Logistics Mineral Resources Evaluation http://alaskacanadarail.com/documents/WPA2/WPA2d%20MP%20LogisticsEv aluationMineralResources(2)2006_05_17.pdf

APPENDIX -TCAM Equations & Data Sources Overview

Rail

 Based on US freight fleet-wide fuel economy as reported by American Association of Railroads

Road

Fuel economy regression equation based on total vehicle weight derived from US DOT VIUS and FHA *Highway Statistics*.

Water

Methodology adopted from ICF/EPA port emission inventory best practices. Utilizes emission factors based on engine power output (g/kWh) instead of fuel consumption. Data sources include: ICF Consulting, US EPA, Swedish Methodology for Environmental Data, Lloyd's Register, MAN Diesel.

APPENDIX -TCAM Equations & Data Sources Rail

Total Rail CO_2 (kg) = F * R * C

Where:

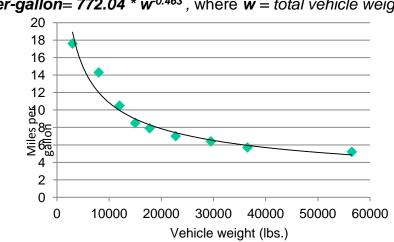
F = Revenue tonne-kilometers of freight: *distance(km)* * *tonnes of freight,* both figures being derived from the userdefined scenario

R = Fuel consumption rate (L diesel/tonne-km): default value = **0.005946**, following American Association of Railroads (AAR) *Railroad Facts 2008* (p. 40), which provides the following fleet-wide average: 436 revenue-ton-miles / gallon fuel consumed for 2007. This figure was converted to L/tonne-km using the following equation:

L/tonne-km = 1 / (436 * 0.264 gallons/liter * 1.609 km/mile * 0.907 tonnes/ton)

 $C = CO_2/L$ of diesel (kg); default value = 2.6681, according to US EPA

APPENDIX -TCAM Equations & Data Sources Road



Total Road CO_2 (kg)= F * R * C / W

Where:

F = Revenue tonne-kilometers of freight: *distance(km)* * *tonnes of freight,* both figures being derived from the userdefined scenario

R = Fuel consumption rate (L diesel/km, or 1/*e* where *e* is *fuel economy*). Fuel economy is based on total vehicle weight. Data on vehicle weight from the **US Department of Commerce Bureau of the Census** 2002 Vehicle Inventory and Use Survey and the **US DOT Federal Highway Administration** Highway Statistics 2007 (for Class 8 combination trucks) was used to derive a regression equation to calculate fuel economy from combined vehicle and cargo weight (converted to metric units afterwards):

miles-per-gallon= 772.04 * $w^{-0.463}$, where $w = total vehicle weight (lbs.), r^2 = 0.9605$

 $C = CO_2/L$ of diesel; default value = 2.6681, according to US EPA

W = Total vehicle weight (tonnes), defined here as equal to *curb weight* (weight of empty vehicle) plus *freight tonnage*. *Curb weight* values for each truck Class are derived from the FHA's <u>Development of Truck Payload Equivalent Factor</u>

APPENDIX -TCAM Equations & Data Sources

Water Freight

Total Water CO₂ (kg) = $\sum_{t} (\sum_{m} (H_{m,v} * L_{m,t,v} * P_{t,v} * N_{t,v} * E_{m,t}))$ for vessel type v

Where:

- t = engine type (2 total) (propulsion/main, auxiliary)
- m = activity mode (4 total) (cruise, reduced-speed-zone (RSZ), maneuvering, hotelling)
- v = vessel type (8 options) (auto carrier, bulk carrier, container ship, cruise ship, general cargo, RORO, reefer, tanker)

H = average or expected amount of time (hrs) a vessel of type *v* spends in activity mode *m*. Default values: *hotelling* = 40, *maneuvering* = 1, *RSZ* = 2. Values for *cruise* activity mode are automatically calculated from scenario-derived *distance* (km), and *average cruise speed* for a vessel of type *v*. Sources: *Thesing and Edwards 2006, Lloyd's Register, ICF/EPA 2006*

L = loading factor (percent). The percentage of the maximum continuous rating (MCR) used by engine type *t* in mode *m* for vessel type *v*. Source: US EPA Analysis of Marine Vessel Emissions and Fuel Consumption Data

 P = Maximum Continuous Rating (MCR) for engine type *t* in kW. Auxiliary engine power is based on <u>ICF/EPA</u> fleet averages.
 Main engine power is derived from ship domestic weight tonnage (DW and vessel type *v* based on the following <u>EPA</u> regression equation and table:

Main engine power (kW) = (a * DWT) + b

Ī	/essel Type	а	b	r ²
A	Auto Carrier	0.4172	7602	0.17
E	Bulk Carrier	0.0985	6726	0.55
٨V	Opontainer Ship	0.8000	-749.4	0.59
C	Cruise Ship	6.810	-4877	0.72
C	General Cargo	0.2880	3046	0.56
F	RORO	0.5264	4358	0.76
F	Reefer	1.007	1364	0.58
٦	Fanker	0.1083	6579	0.66

- **N** = number of engines of type *t*, which varies by vessel type *v*. Generally, *N* =1 for main engines, and *N* < 6 for auxiliary. Source: ICF/EPA 2006: Current Methodologies and Best Practices for Preparing Port Emission Inventories
- **E** = CO2 equivalent emissions rate in grams per kilowatt hour (g/kWh), specific to *m* and *t*. Source: <u>SMED Methodology for Calculating Emissions from Ships</u>

APPENDIX -TCAM Equations & Data Sources References

American Association of Railroads (AAR). 2008. Railroad Facts 2008.

Browning, Louis, and Kathleen Bailey. ICF Consulting and U.S. EPA. 2006. *Current Methodologies and Best Practices for Preparing Port Emission Inventories*. Proc. of 15th International Emission Inventory Conference, New Orleans, LA.

Lloyd's Register of Shipping. 1995. Marine Exhaust Emissions Research Programme. London, United Kingdom.

MAN B&W Diesel A/S . 2004. Propulsion Trends in Bulk Carriers. Copenhagen, Denmark, September 2004.

MAN B&W Diesel A/S . 2004. Propulsion Trends in Container Vessels. Copenhagen, Denmark, December 2004.

MAN B&W Diesel A/S . 2005. Propulsion Trends in Tankers. Copenhagen, Denmark, August 2005.

- Swedish Environmental Research Institute. 2004. Swedish Methodology for Environmental Data. *Methodology for Calculating Emissions from Ships. 1. Update of Emission Factors*. By David Cooper and Tomas Gustafsson. Norrkoping: Swedish Meteorological and Hydrological Institute (SMHI).
- Thesing, Kirstin B. and Alice Edwards. E.H. Pechan & Associates and Alaska Department of Environmental Conservation, Air NonPoint & Mobile Source Program. 2006. *Nine Ports in the 49th State: Commercial Marine Inventory for Alaska*. Proc. of 15th International Emission Inventory Conference, New Orleans, LA.
- U.S. Department of Commerce, Bureau of the Census, 2002. Vehicle Inventory and Use Survey. Additional information: http://www.census.gov/econ/overview/se0501.html
- U.S. Department of Transportation Federal Highway Administration. 2007. Office of Freight Management and Operations. Development of Truck Payload Equivalent Factor (TPEF). By Mohammed Alam and Gayathri Rajamanickam. Washington, D.C.
- U.S. Department of Transportation Federal Highway Administration. 2007. Office of Highway Policy Information. *Highway Statistics 2007*. Washington, D.C.
- U.S. Environmental Protection Agency. Office of Transportation and Air Quality. 2000. *Analysis of Commercial Marine Vessels Emissions and Fuel Consumption Data*. Energy and Environmental Analysis Inc. EPA420-R-00-002.
- U.S. Environmental Protection Agency. Office of Transportation and Air Quality . 2005. Emission Facts: Average Carbon Dioxide Emissions