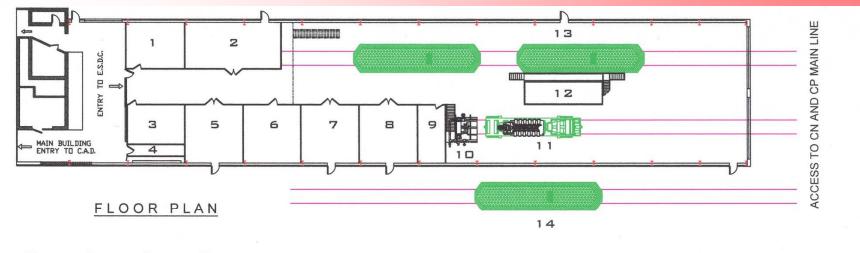


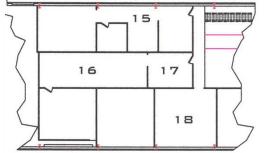
Preliminary Evaluation of Biodiesel Blends by Using a Single-Cylinder Medium-Speed Diesel Engine

Presented by Manuel Vasquez.

Who We Are

A multidisciplinary team of engineers and technicians working together to address a need for a completely independent research facility focused on applied research and testing of medium-speed diesel engines, emissions, engine components, fuels and lubricants on a proprietary and confidential basis.


Engine Systems Development Centre Div. of CAD Railway Ind.



Facility Layout

- 1 Fuels & Lubricants Analysis Lab.
- 2 Electro-Mechanical Test Lab.
- 3 Instrumentation Lab.
- 4 Emissions Lab. #1
- 5 Test Cell #2 (SCRE-251) Fuels / Additives / Bio Diesel
- 6 Test Cell #2 & #3 Control Room
- 7 Test Cell #3 (SCRE- 251+)
- Fuel Injection Engine Components
- 8 Emissions Lab. #2
- 9 Calibration Room

- 10 Engine Auxiliary Equipment
- 11 Test Cell #5 Multicylinder Engine 5145 HP Max. Engine Transporter / Test Platform
- 12 Control Room
- 13 Test Cell #6 Locomotive 5145 HP Max.
- 14 Locomotive Exterior Test Cell #7
- 15 Offices
- 16 Chemistry Lab.
- 17 Chemistry Lab. Office
- 18 Stores

Locomotive Testing

Interior and exterior test cells have capacity for conducting full scale locomotive tests.

Locomotive performance

Emissions:

- As per EPA 40 CFR Part 92, 1065

Vibration

BSFC

Endurance test

Noise

Engine Testing

Locomotive engines, gen-sets and heavy duty diesel engines.

Engine performance Emissions BSFC Vibration Engine components

Presentation Overview

- Introduction
- Test Description
- Results and Discussion
- Conclusions

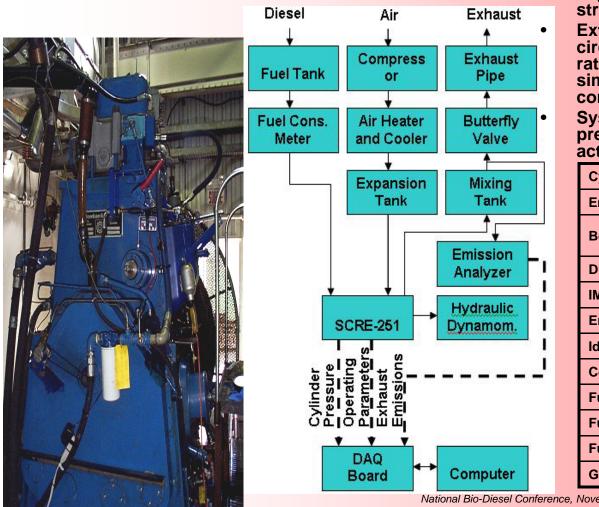
Introduction

- Why Biodiesel?
 - Has many advantages over petrodiesel such as reducing life-cycle greenhouse gas.
 - Reducing toxic engine exhaust emissions.

• Investigate more the effects of biodiesel as alternative fuels on Railway diesel locomotive in Canada.

•Objective:

• Evaluate the effects of biodiesel blends on the performance and emissions of a single-cylinder medium-speed diesel engine.


• Obtain preliminary information about biodiesel for medium speed diesel engine application, base on which candidate biodiesel blends can be recommended for further investigation on locomotive.

Test Description

Single Cylinder Research Engine.

- A 4-stroke medium-speed DI diesel research engine with 9.0-inch bore and a 10.5-inch stroke.
 - External cooling water and lube oil circulating systems allow water and oil flow rates and temperatures controlled to simulate actual multi-cylinder engine conditions.

Systems control engine intake air temp., pressure, exhaust back pressure to simulate actual multi-cylinder engine conditions.

-	-
Cylinder	1
Engine Stroke	4
Bore x Stroke	9.0 in. (228.6 mm) x 10.5 in. (266.7 mm)
Displacement	668 cu. in. (10.9 L)
IMEP (max)	23 bar (334 psi)
Engine Speed (max)	1200 rpm
Idle Speed (Normal)	400 rpm
Compression Ratio	11.5:1 (Variable)
Fuel Injection Type	Direct Injection
Fuel Injector	9 holes × 0.40 mm × 145°
Fuel Injection Timing	27.5° CA BTDC (Variable)
Governing	Electronic

Test Sequence

Biodiesel Blends

Test Day #	Fuels	R	Run	# B	ase uel	Biodiesel Percent	Blend Index	
Day-1	#2 Diese	1	1/3			5	CB5	
Ĵ	FB5		Canola 1/3	#21	Diesel	20	CB20)
Day-2	FB20	FB20 F		#2 T	Diesel	5	FB5	
Day 2	FB20		Oil 2/3	121	10301	20	FB20	
Day-3	FB5		2/3					
Day 4	FB20)	3/3					
Day-4	FB5		3/3			Г	Index	
Day-5	#2 Diese	1	2/3			ľ	TM1	-
	CB5		1/3					
Day-6	CB20)	1/3			-		
Day 7	CB20)	2/3				TM2	
Day-7	CB5		2/3					
Day 8	CB20)	3/3			-		-
Day-8	CB5		3/3				TM3	
Day-9	#2 Diese	1	3/3					

Test Modes

Index	Test Mode
TM1	Speed: 400 rpm Fuel rate: 1.6 kg/hr Air boost pressure: 17.2 kPa Intake air temp.: 50 °C
TM2	Speed: 800 rpm Fuel rate: 19.8 kg/hr Air boost pressure: 103.1 kPa Intake air temp.: 70 °C
TM3	Speed: 1050 rpm Fuel rate: 45.4 kg/hr Air boost pressure: 209.6 kPa Intake air temp.: 85 °C

Results and Discussion

Test Mode 3

Engine Operating Parameters

Engine Parameters were maintained within small percentage of mean value.

Test Mode	Test Run No.	Fuel Rate (lb/min)	Coolant Temp. Eng. Out (°C)	Boost Air Temp. (°C)	Oil Temp. Sump (°C)	Boost Air Press. (psi)
	#1/3	1.000	0.5			30.5
# 2 Diesel	#2/3	1.667	83	84	87	30.6
	#3/3	1.663	83	84	86	30.5
	#1/3	1.669	83	84	87	30.6
FB5	#2/3	1.669	81	85	86	30.6
	#3/3	1.664	83	84	85	30.5
	#1/3	1.667	84	84	86	30.5
FB20	#2/3	1.666	81	84	86	30.6
	#3/3	1.671	82	85	86	30.5
	#1/3	1.670	82	85	87	30.5
CB5	#2/3	1.667	82	85	86	30.6
	#3/3	1.663	80	84	87	30.5
	#1/3	1.666	83	84	87	30.6
CB20	#2/3	1.668	82	85	86	30.5
	#3/3	1.666	81	84	85	30.5
Mean		1.667	82.3	84.3	86.3	30.5
S.D. /Mean (%)		0.14	1.57	0.58	0.95	0.17

Results and Discussion

Test Mode 2

Engine Operating Parameters

Engine Parameters were maintained within small percentage of mean value.

Mode 2 Operating	Test Mode	Test Run No.	Fuel Rate (lb/min)	Coolant Temp. Eng. Out (°C)	Boost Air Temp. (°C)	Oil Temp. Sump (°C)	Boost Air Press. (psi)	
neters		#1/3	0.730	78	69	83	15.1	
	# 2 Diesel	#2/3	0.729	78	70	84	15.1	
		#3/3	0.727	78	69	83	15.1	
		#1/3	0.730	79	70	83	15.2	
	FB5	#2/3	0.730	77	69	83	15.1	
		#3/3	0.734	79	70	84	15.1	
		#1/3	0.728	78	70	83	15.1	
	FB20	#2/3	0.730	78	69	83	15.1	
		#3/3	0.730	79	71	83	15.1	
		#1/3	0.731	78	69	83	15.0	
	CB5	#2/3	0.726	79	70	83	15.0	
re		#3/3	0.727	79	69	84	15.1	
11		#1/3	0.73	78	69	83	15.1	
lue.	CB20	#2/3	0.729	79	70	83	15.0	
		#3/3	0.727	79	70	83	15.0	
	M	ean	0.729	78.4	69.6	83.2	15.1	
	SD /M	lean (%)	0.28	0.81	0.91	0.50	0.37	
	J.D. / W	cuii (70)	0.20	0.01	0.31	0.50	0.37	

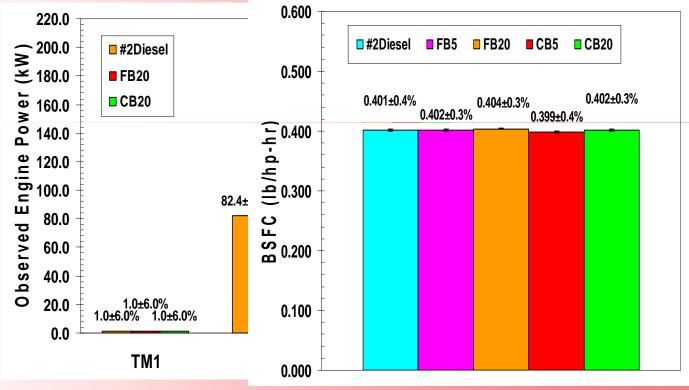
Results and Discussion

Engine Operating Parameters								
Engine Peremeters were								
Engine Parameters were maintained within small percentage of mean value.								

Test Mode 1

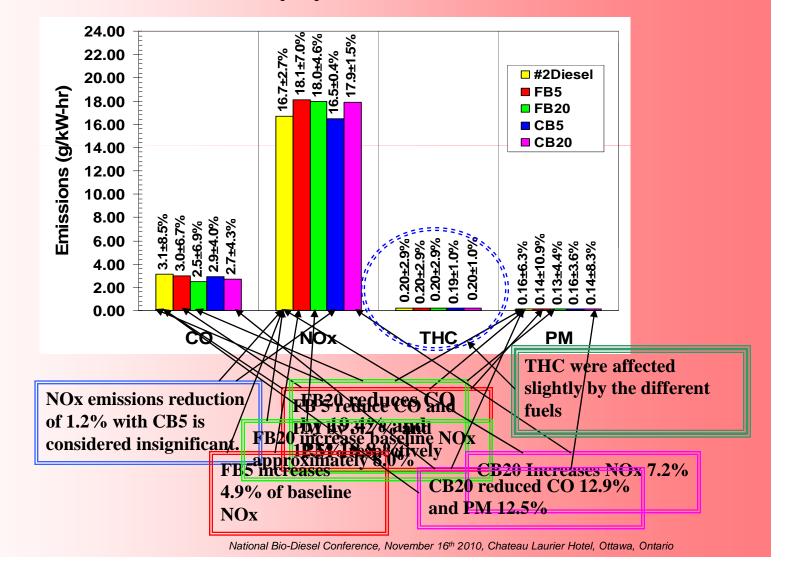
st Mode 1 e Operating	Test Mode	Test Run No.	Fuel Rate (lb/min)	Coolant Temp. Eng. Out (°C)	Boost Air Temp. (°C	Oil Temp. Sump (°C)	Boost Air Press. (psi)	
rameters		#1/3	0.057	74	49	75	2.4	
	# 2 Diesel	#2/3	0.056	75	50	78	2.7	
		#3/3	0.054	75	49	78	2.7	
		#1/3	0.056	75	48	78	2.6	
	FB5	#2/3	0.056	74	49	78	2.5	
		#3/3	0.056	74	49	78	2.7	
		#1/3	0.058	72	51	76	2.5	
	FB20	#2/3	0.057	74	50	78	2.6	
		#3/3	0.057	75	49	77	2.7	
		#1/3	0.057	74	49	77	2.4	
	CB5	#2/3	0.056	76	49	76	2.5	
		#3/3	0.054	75	50	76	2.6	
s were small		#1/3	0.057	74	49	76	2.6	
n value.	CB20	#2/3	0.056	76	50	76	2.6	
i vulue.		#3/3	0.056	75	50	76	2.8	
	Me	ean	0.056	74.5	49.4	76.9	2.6	
	S.D. /M	ean (%)	1.93	1.33	1.49	1.38	4.48	

# 2 Diesel							# 2 Diesel							
- Test		BSFC (II)		b/h p ₁	/hurthit			t Changes BS		FC (lb/hp-h)			Changes (%)*	
Test Mode	Run			M	ode		un Io.		%)* #2Diesei		CB5	CB20	CB5	CB20
	No.	#2Diesel	F	35	-FB2		0 ГВ5 #1/3	İ	FB20 2.332		2.309	2.382		
	#1/3	2.332	2.	303	2.34	46 #	2/3		2.394		2.596	2.364		
	#2/3	2.394	2.:	379 [⊤]	M12.4	7		-						
TM1	#3/3	2.415	2.3	81	2.3		3/3		2.415		2.220	2.377		
	Mean	2.380		54	2.3	M	ean -1.1		2.380 -0.9		2.375	2.375	-0.2	-0.2
	#1/3	0.383	0.	84	0.3	89 [#]	1/3		0.383		0.381	0.389		
	#2/3	0.383	0.	383 _T	M2 ^{0.38}	88 #	2/3		0.383		0.381	0.388		
TM2	#3/3	0.380		886	0.3	91 #	3/3		0.380		0.381	0.387		
	Mean	0.382	0.	85	0.3	89 M	eaŋ.8		0. <u>8</u> 82		0.381	0.388	-0.3	1.6
	#1/3	0.389	0.	90	0.3	87 #	1/3		0.389		0.386	0.386		
TM3	#2/3	0.387	0.	87 ₋	0.3	88 #	2/3		0.387		0.386	0.387		
TIVIS	#3/3	0.386	0.	387	0.3	8 9 #	3/3		0.386		0.384	0.385		
	Mean	0.387	0.	88	0.3	88 M	eaA.3		0.9 8 7		0.385	0.386	-0.5	-0.3


Values of Frying oil-based BVadiesebbCeanolarbased Biodiesel blends and

* Changes (%) =100 x (BSFC of Biodiesel blend – BSFC of Baseline)/(BSFC of Baseline)

Observed Engine PoweDuty-cycle weighted BSFC

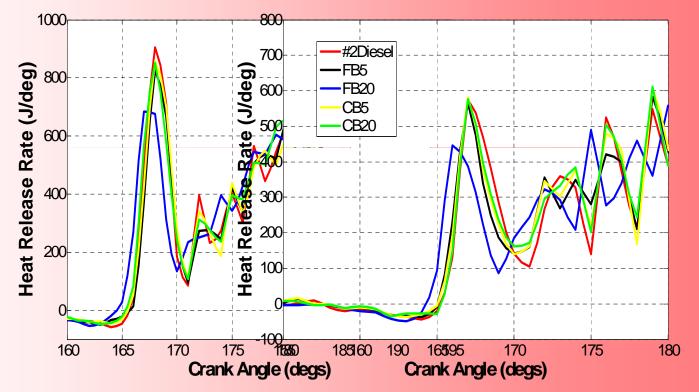

• FB20 reduce engine baseline power by 1.2% at TM3 and 2.8% at TM2

• CB20 reduce engine baseline power by 0.9% at TM3 and 2.4% at TM2 • Weighting factor are 50%, 25% and 25% for TM1, TM2 and TM3 respectively

Duty-cycle emissions

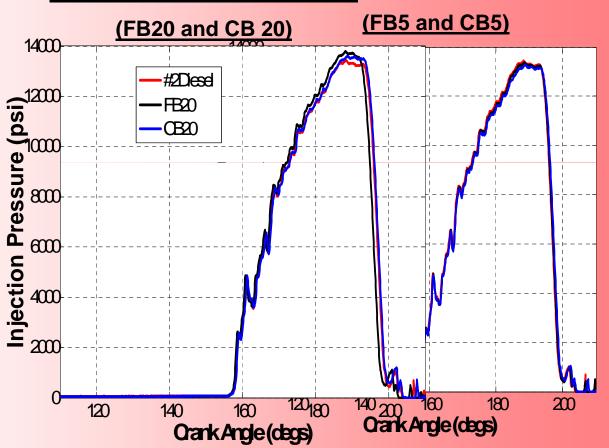
	Smoke Opacity (%)									
Test Mode	#2 Diesel	FB5	FB20	CB5	CB20					
TM1	0.4	0.3	0.3	0.5	0.4					
TM2	0.8	0.6	0.4	0.6	0.6					
TM3	1.6	1.3	0.8	1.3	1.2					

•Smoke showed up to 50% improvements over baseline data at TM3 with the biodiesel blends.


•The smoke opacity decreases with increasing percent biodiesel.

•The smoke of frying oil biodiesel shows more significant improvements as compared with that of the canola.

Heat Release Rate (HRR) at TM3



The Biodiesel blends have blends after affeition glethy on the HRR at mixing-than # 2 diesel, and delayntro HBd20nis after combustion period. Therefore, significant. for the same fuel mass rate, observed power
Shorter ignition delayraductions with FB20 and CB 20 are attributed to ready to burn during the prefragment of the same ready to burn during the prefrag

Fuel Injection Pressure Fater Injection Pressure at TM3

FB20 increase peak pressure by **FB**and **CB5**2010 # 127 diesel are similar %. The FB 20 has shorter injection duration than the base fuel, and this is considered as a result of engine operating with higher density fuel at a constant fuel rate. National Bio-Diesel Conference, November 16th 2010, Chateau Laurier Hotel, Ottawa, Ontario

Conclusions

• 5 % biodiesel blends could maintain engine baseline power and fuel economic with additional benefits of reduced CO, PM and smoke emissions

• FB5 increased engine NOx by about 5%, slight reduction in NOx with CB5 was observed.

• Injection pressure pattern of CB5 and FB5 were comparable to that of #2 diesel for a constant mass fuel rate and fuel inlet temperature.

• Slight effects of the FB5 and CB5 on ignition delay and combustion heat release rate were observed.

• 20% of biodiesel blends further reduce CO, PM and smoke without negative effect on NOx emissions compared to the 5% biodiesel blends

• Biodiesel shows less than 2% power reduction at engine full load.

• Heat release rate data clearly showed that the power reduction is combination of shorter ignition delay and lower fuel heating value.

• 20% biodiesel blends affected fuel injection pressure pattern, therefore, in order to apply the 20% biodiesel blends in a medium speed diesel engine, fine tune or durability assessment of fuel injection system may be required.

ACKNOWLEDGMENTS

 This work was done in 2005 by Engine System
 Development Centre Inc, (Fan Su, Malcolm L Payne and Manuel Vasquez) Transport Development Centre, Transport
 Canada (Alex Vincent), and Telligence Group (Peter Eggleton).

Note: Engine System Development Centre Inc was purchased by Global Railway and became part of CAD Railway Industries in November of 2007.

Thanks