

Dr. Ananthakrishna Sarma, Senior Scientist, SAIC, 1710 SAIC Dr., McLean, VA 22102

Presented at the Airships to the Arctic Conference of the Van Horne Institute 5-6 December 2011

Introduction

- Weather hazards to airship operation
- Hazard mitigation
- Weather over complex terrain
 - Prediction
- Route planning and optimization
 - Severe weather avoidance
 - Finding favorable winds

Airship Weather Hazards

Winds

- Can equal or exceed the speed of travel
- Turbulence and large eddies can cause problems
- Wind gusts near ground have caused numerous airship accidents
- Terrain-induced winds and turbulence

Temperature extremes

- Affects buoyancy and hence the ability to climb or descend
- Super-stable near surface layers can disrupt landing attempts

Airship Weather Hazards

- Icing
 - Loads the airship
- Precipitation (rain, snow, hail)
 - Loads the airship
 - Induced downdrafts can pose a serious hazard
 - Hail can damage the envelope
- Thunderstorms
 - Updrafts and downdrafts
 - Turbulence
 - Gust fronts
 - Precipitation
 - Heavy rain, hail

USS Shenandoah crashed in 1925 when caught in a storm over Ohio

© SAIC. All rights reserved.

Hazard Mitigation

- Airships are (usually) slow, underpowered, and large
 - High inertia
 - It may not be possible to take evasive actions at the last minute
- Avoid ... Avoid ... Avoid
 - Avoid takeoffs and landings in adverse weather
 - Avoid regions of adverse weather during flight
- Advance planning
 - Use detailed weather information and forecasts
 - Alternate routes and landing sites
- Constant monitoring and updates
 - Use detailed weather information and forecasts

However ...

Weather forecasting and analysis tools have significantly improved over the years

© SAIC. All rights reserved

- Higher resolution
- Improved terrain representation
- Improved physics
- Improved computational performance
 - Operations on large parallel systems
- Observational systems have also improved
 - Satellite observations
 - Doppler radar
 - Ground-based
 - On-board
 - Automated observing systems
- Modern navigation systems
 - **GPS**

6

Weather Prediction over Arctic Regions

Weather over Arctic Regions

- Weather systems exhibit higher pressure gradients
 - Generate high winds
- Sudden changes in weather

Gradients are Tighter over the Polare Regions

Winds at 500 mb (~ 5 km MSL)

SAIC.com

Winds at 300 mb (~10 km MSL)

Case: wal-h Run: 2005091500 Valid: 2005-09-15 0000Z Wind Speed (kt)

Weather over Arctic Regions

 Weather over Arctic Regions, especially in the lower troposphere, is affected by terrain features

Elevation

Land-water boundaries

Snow and ice cover provides large contrasts in solar albedo

Terrain-induced weather

Down-slope winds

Fog

Precipitation events

Complex terrain poses special challenges to the weather forecaster/modeler

Fundamentals of Numerical Weather Prediction

Laws of Conservation start with

$$\frac{dQ}{dt} = \frac{\partial Q}{\partial t} + \vec{V} \bullet \nabla Q$$

If Q is conserved

$$\frac{dQ}{dt} = 0$$

Hence

$$\frac{\partial Q}{\partial t} = -\vec{V} \bullet \nabla Q$$

Divide and Conquer

- The conservation equations have to be solved over the entire domain of interest, may be over the whole globe
- To make this feasible, we divide the domain into little bits within which we can assume that the properties do not change significantly

Divide and Conquer

In each small cell or grid, the continuity or conservation calculations become simpler book-keeping calculations of what flows in and what flows out.

SAIC'S OMEGA

Operational Multiscale Environment model with Grid Adaptation

- A new paradigm in NWP
- A merging of state-of-the-art CFD techniques with well-validated atmospheric parameterizations
- Multiscale treatment implicit up- and down-scale interactions
- Efficient use of large parallel computers
- Complete NWP system

OMEGA Grid Structure

- OMEGA uses a triangular mesh that is unstructured in the horizontal, but structured in the vertical direction.
 - Because triangles can adapt best to surface and atmospheric features, they significantly increase the modeling accuracy.
- The coordinate system is Cartesian with its origin placed at the center of the Earth, the x-axis through the Equator and the prime meridian, and the z-axis through the North Pole.

Weather Prediction over Complex Terrain

- Accurate prediction over complex terrain requires the accurate representation of the terrain in the model
- State-of-the-art models such as the Operational Multiscale Environment model with Grid Adaptivity (OMEGA) uses a triangular unstructured mesh to represent the terrain at the best resolution possible under computational constraints

Example Alaska – Computational Grid

Resolution:

- 40 60 km background
- 15 40 km intermediate
- 6 15 km finest
- 20,000 cells × 36 layers

Automated Optimized Grid Generation

- OMEGA generates a grid that is optimized to resolve terrain at required resolution
- Triangular grid fits terrain better than traditional rectilinear grids
- Adaptation to
 - Terrain slope
 - Land/water boundaries
 - Other user specified criteria such as specific locations
- Grid can adapt to evolving solution
 - Adaptation to storms such as hurricanes

Automated Optimized Grid Generation

Winds Are Modified by the Terrain

Turbulence Due to Terrain-Induced Shear

Terrain-Induced Weather (example)

SAIC.com

Terrain-Induced Weather (example)

Dynamic Grid Adaptation in OMEGA Hurricane Ivan – 2004

Grid resolution ranges from 100km down to 1km, dynamically adapting to the hurricane location

Using Dynamic Grid Adaptation

Airship Routing – Optimization for Weather

Routing Issues

- Most airships fly in the lower troposphere in which winds and other weather elements change rapidly due to terrain, land-cover and other factors
- Airships are expected to operate in remote and sparse infrastructure regions
- Need to carry as much fuel as possible
- Fuel vs. payload (cargo) tradeoff
- Long transits increase the possibility of encountering adverse weather
- This apparently simple problem of avoiding adverse weather is made complex as the weather evolves during the flight

Routing Methodology

- Avoid adverse weather events
 - Storms, head winds, precipitation events
- Avoid terrain
- Find tail winds if possible
- Use detailed weather forecasts that include effects of terrain.

Airship Route Optimization for Weather

- Large cargo airships range vs. payload considerations
- Default best route (no weather) Great Circle Route (minimal distance at the same altitude)
- Change route to move away from "bad" weather (e.g., head winds and storms) and to take advantage of "good" weather (e.g., tail winds)
- As an example a trans-Pacific route between Ft. Lewis, Wash., and Pusan, South Korea is considered

Great Circle Route

- Minimum distance
- V_{ground} reduced by:
 - Headwind
 - Crab required to counter crosswind

Minimum Time Route

- Travel around a large weather system (40 kt average winds)
- TAS 80 kts
- Assume distance increases by 50 percent (Route A vs. B)
- Assume 40 kt headwind
- Great Circle Time: D/V
- Path A Time: 2 D/V(= D/(0.5 V))
- Path B Time: D/V(= (1.5 D)/(1.5 V))

Route Optimization Algorithm

- Uses the Great Circle Route as a benchmark
- A Monte Carlo analysis approach is used by breaking the route into multiple short flight segments
- Each segment is tested against the performance metric
- Only the best segment is retained in each step
- Recursive definition of routes
- Branching is constrained by other factors such as nearness to the destination and current direction of travel

Algorithm Constraints

- Around 1 million routes are sampled per run
- Routes are restricted to a circular region with the Great Circle Route as its diameter
- Routes are constrained within a pre-determined angular sector
- The new routes are weighted by the previous heading
- The new routes are also weighted by the heading towards the final destination

Optimal Route with Altitude Changes

- As the airship proceeds, the "best" altitude is chosen for each hop
- Altitudes are constrained between an upper (2500 m MSL) and lower bound (1000 m MSL)
- Hops every hour with two tracks spawned with each hop
- Route segments are checked against terrain
- GCR: 8421 km; 66.32 hrs
- Optimal: 9013 km; 53.60 hrs

Optimization Using Ground Speed Ft. Lewis to Pusan

Optimization Using Ground Speed Ft. Lewis to Pusan

Optimization Using Ground Speed Ft. Lewis to Pusan

Optimization Using Ground Speed Ft. Lewis to Pusan

Long-Term Performance

Percent Savings in Fuel

Benefits

- Operational risks due to adverse weather can be significantly reduced
- Substantial fuel savings are possible over long transits
- Airship utility rate is increased less exposed to adverse weather
- Adequate margins of airship flight safety can be maintained without reliance on pilot guess work
- Planned flight arrival times are less susceptible to disruption from adverse weather
- Fuel and payload weight can be optimized due to known fuel consumption en route
- Greater weatherability might reduce insurance premium costs

SAIC.com

Summary

- Airships are vulnerable to weather
- Airship operations require an accurate knowledge of weather
- A new paradigm in numerical weather prediction
 - Unstructured adaptive grid
- Accurate representation of terrain facilitates accurate prediction of terrain-induced circulations
- Dynamic grid adaptation enables the focusing of computer resources where they are most needed
- Route optimization using weather model output shows a great potential for fuel savings for large cargo airships as well as improving operational safety
- Savings possible for normal aircraft not so dramatic as airships
- Better optimization methods?

42

For further information, contact ...

Dr. Ananthakrishna Sarma Senior Scientist, SAIC 1710 SAIC Dr. McLean, VA 22102

Ph: 703-676-7017

E-Mail: sarmaa@saic.com

https://vortex.saic.com

