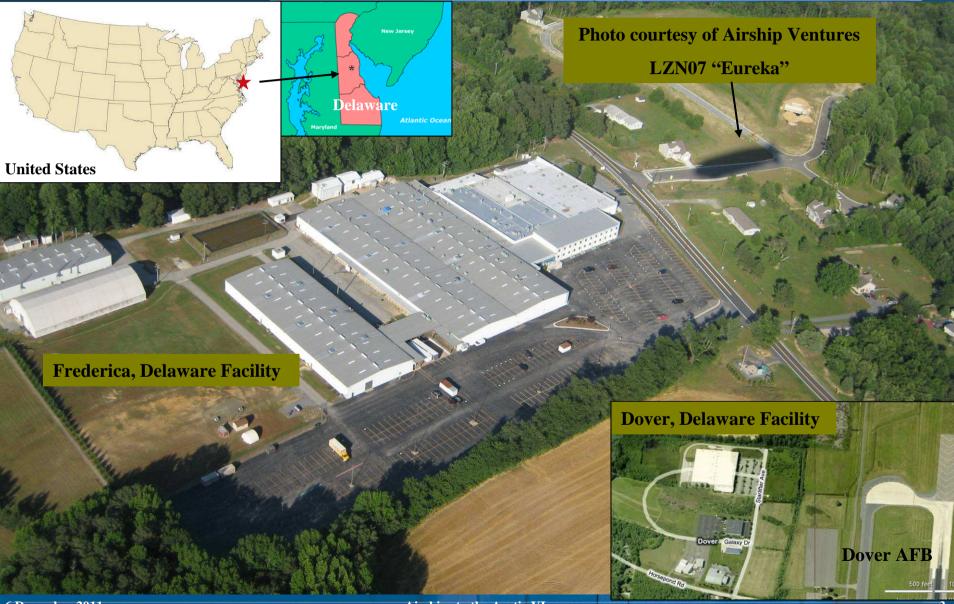


Lighter than Air (LTA) Envelope Manufacturing and Further Considerations for Fabrication of Large Softgoods Structures

Timothy F. Miller Principal Design Engineer ILC Dover


Airships to the Arctic VI December 6, 2011 Seattle, Washington

- Introduction to ILC Dover
- Manufacturing Airship Envelopes
- Further considerations for Large Lighter Than Air Softgoods Structures

ILC Dover

Company Overview

Recipient of NASA's George M. Low Award for Quality and Excellence

Privately held (Behrman Capital)

420 Skilled Employees

- Engineering 25%
- Manufacturing 44%
- Quality 10%

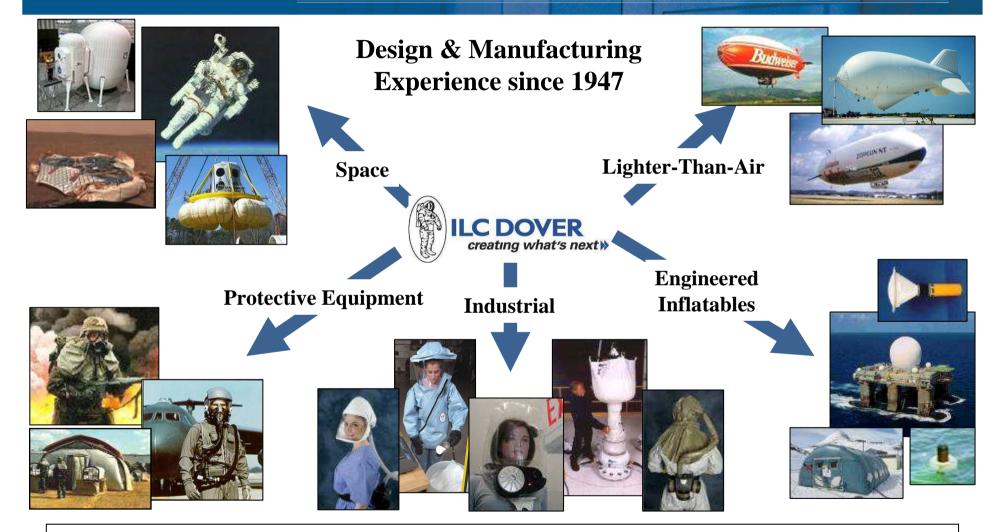
(40 on site at NASA - Houston) (40 on site at NASA - Houston)

Quality Oriented Systems

- Registered to ISO 9001:2008
- NHB-5300.4 (1D-2), MIL-Q-9858A, and MIL-I-45208A quality and inspection systems
- AS 9100 Compliant
- Lockheed Martin Star Supplier

Extensive Facilities

- 280,000 sq ft total (163,000 sq ft High Bay Production) ⇒ another 60,000 sq ft entered production in May 2010
- Development, Test Lab, Fabrication, and Production Areas


Established in 1947

Origins from International Latex Corporation (ILC, Playtex & Reichold Chemical Corporation)

6 December 2011

Product Overview

We leverage our competencies in materials, softgoods design and manufacturing to create highly safe & reliable products that protect people & equipment in hostile environments

6 December 2011

Core Competencies

Engineering / Design

- Using softgoods to solve life critical problems
- Designing softgoods to replace traditional hard elements
- Designing articulated soft pressure vessels

Materials Development

- Structural containment for use in extreme environments
- Barrier films
- Structural /Laminated materials

Manufacturing

- Production, inspection and testing of large inflated structures
- Precise, reliable sealing for critical applications

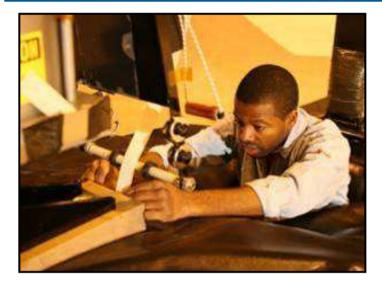
Key Capabilities: Materials Development and Analysis

Airships to the Arctic VI

Key Capabilities: Test Resources

Capable of Performing a Wide Range of Testing in the Rubber, Plastic, Composite and Textile Fields

- Instron Tensile/Compression Testing at
 - Ambient or Service Temperature
 - Extremes (cryo to 600F)
 - Bi-Axial loading
- Accelerated Aging
 - QUV
 - Chamber Ovens
 - Environmental Chamber, Selected Temperature and Humidity
- •Gas Permeability Testers
- Abrasion Testers
- Flex Fatigue (several)
- Electrical Properties Surface and Volume Conductivity
- Specialty test fixtures
- Protection Factor Test machines & chambers
- Manned test area and environmental chamber



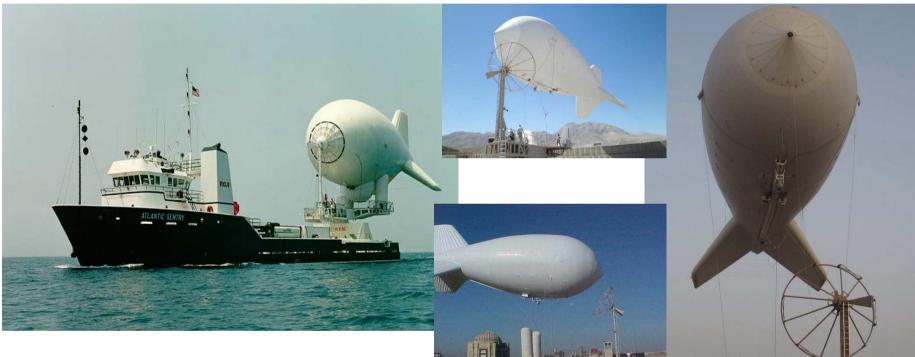
8

Key Capabilities: Manufacturing

- 190 Trained Manufacturing Personnel
- 30 Trained Softgoods Inspectors
- 125+ Heat Sealers
- In house heat sealer design and fabrication
- More than 220,000 ft² of High Bay production

C DOVER creating what's next »

Aerostat/Airship Experience 1982-2011


Description	Description Envelope Size (ft ³)		Customer	Deployment Location				
StarTower	20-40,000	2	Global Near Space	US				
56K/56KXL Aerostat	56-64,000	27	GE/Lockheed Martin	Caribbean, UK, Iraq				
A-60+	68,000	27	American Blimp	Worldwide				
74K Aerostat	74,000	94	Lockheed Martin	Iraq, Afghanistan				
A-150	150,000	10	American Blimp	Worldwide				
A-170	170,000	4	American Blimp	Worldwide				
A-170G	170,000	1	American Blimp	Worldwide				
275K Aerostat	275,000	16	GE/USAF	Florida				
LZN07	300,000	5	Zeppelin	Germany, Africa, Japan, US				
CycloCrane	330,000	1	AeroLift	Oregon				
365K Aerostat	365,000	5	TCOM/Westinghouse	Israel				
420K Aerostat	420,000	25	Lockheed Martin/TCOM/ITT	Caribbean, Southern US				
HALE-D	500,000+	1	Lockheed Martin	US				
595K Aerostat	595,000	5	GE	Caribbean, Southern US				
Logging Balloon	620,000	2	Skyhook	British Columbia				
LEMV	1,400,000	1	Northrop Grumman	US				
AirCrane	4,000,000	1	TCOM/Cargolifter	US				

200+ Lighter than Air Envelopes Delivered Worldwide

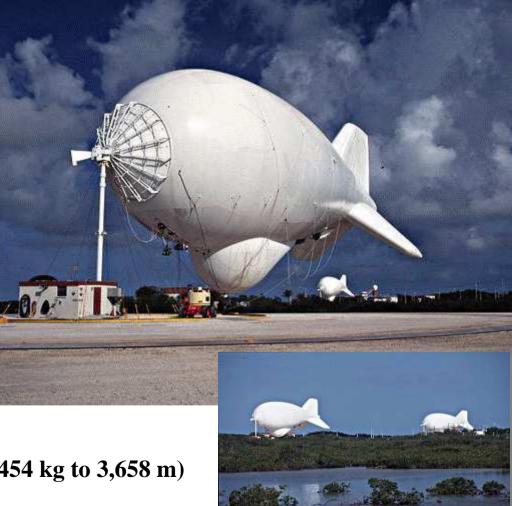
56K/74K Aerostats

Purpose: Surveillance, Airspace Control, Drug Interdiction

Volume: 74,000 ft³ (2,095 m³) Major Diameter: 39.0 ft (11.9 m)

Length: 119.0 ft (36.3 m)

Payload/Altitude: 1,100 lb to 4,900 ft (500 kg to 1,500 m)


275K Aerostat

Purpose: Surveillance, Airspace Control, Drug Interdiction

Volume: 275,000 ft³ (7,788 m³) Major Diameter: 62.5 ft (19.1 m) Length: 187.0 ft (57 m) Pavload/Altitude: 1000 lb to 12 000 ft (

Payload/Altitude: 1000 lb to 12,000 ft (454 kg to 3,658 m)

420K Aerostat

Purpose: Surveillance, Airspace Control, Drug Interdiction

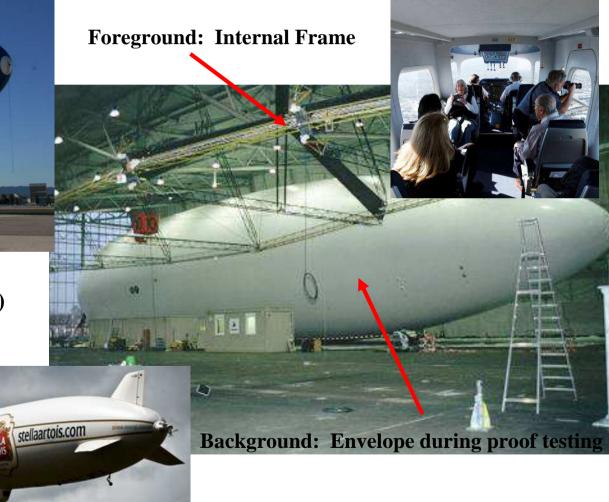
Volume: 420,000 ft³ (11,895 m³) Major Diameter: 69.5 ft (21.2m) Length: 208.5 ft (63.6 m) Payload/Altitude: 2000 lb to 15,000 ft (908 kg to 4572 m)

6 December 2011

ABC Lightships

Purpose: Advertising

Major Diameter: up to 43 ft Length: up to 125 ft (38.1m) Capacity: up to 10 People



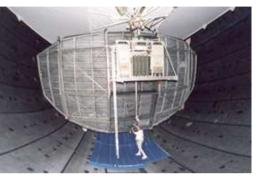
Zeppelin Airship

Purpose: Passenger Flights, Advertising, Environmental Survey,

Volume: 300,000 ft (8,496 m³) Major Diameter: 46.5 ft (14.2 m) Length: 234 ft (71.3 m) Capacity: 14 people

Other Lighter Than Air Programs

CargoLifter AirCrane


- Define Requirements
- Design
- Fabrication
- Checkout

Requirements Definition

General

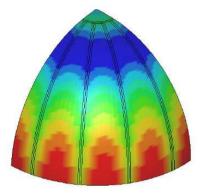
- Purpose
- Geometry
- Configuration
- Volume
- Mass
- Pressurization Gas
- Service Life
- Manned/Unmanned

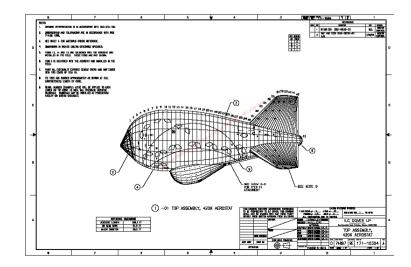
Operational Environments

- Temperature Min/Max
- UV exposure
- Humidity
- Ozone
- Dust
- Mold/Mildew
- Packing/Unpacking Cycles
- Field Repairability

Structural Load Requirements

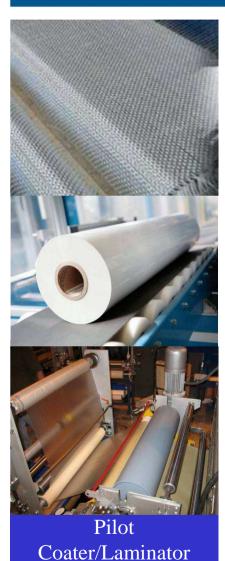
- Static Pressurization Loads
- Aerodynamic Loads
- Thermal Loads
- Payload Locations/Size/Weight
- External Attachment Locations and Loads


- Other Design Considerations
 - **FAA Certification Requirements**
 - Color/Reflectance/Transmittance/Absorbtivity
 - Radar Transmittance



Design Effort

- Analysis
- Materials and Seam Development and Testing
- Subassembly Design and Testing
- Develop Production Documentation



LC DOVER creating what's next>>

Design Materials and Seam Development and Testing

Material Selection

Fabric

- Fiber
 - Denier
 - Count
 - Twist
 - Weave

Films

Type

Thickness

Adhesives

- Chemistry
- Adhesion
- Thickness
- Color

- Material Testing
 - Weight
 - Tensile
 - Modulus
 - Tear
 - Width
 - Adhesion
 - Seam Strength
 - Seam Durability
 - Permeation
 - Resistance to Pinholing
 - Environmental

Adhesion Testing

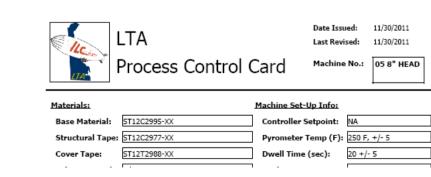
High Temp/High Humidity Seam Test

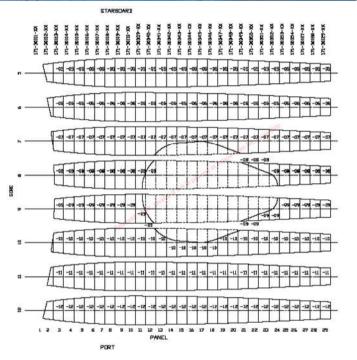
Design Subassembly Design and Testing

Load Patch Testing

- Iterative Process
 - Analyze
 - Design
 - Fabricate Samples
 - Test

Lacing Strip Testing


Tie Tab Testing



- Specifications
- Drawings
- Work Instructions
- Cut Files
- Manufacturing Specification
- Standard Repair Procedure
- Process Control Cards

UNIT NAME	E INDSCREEN ASSY	UNIT RECORD CARD										P	I	U	λ	C
USED ON -	NAME OWER CENTER SECTION AS	In	N	171-20064 MNOSCRE		REV	-	- 6	BONE BAC							
9.0	INSTALL ACCESS PORT A	/ [LOT	DACN	0171-	2897		DATE COM	LETED							
9.1	Cut out access port locat		0760	Quantity Release D CELS/N	ste 1-1 42	2.55				RECORD	CAR	D				
	RA	OPER.	OPERATIONAL DET				ALOE		CREEN ASSY			101 1	Thangé J DACN	-017	1-2	17.2
9.2	Install access assembly at R.R. Align base end of t	9.0	A+ 9.1 24.95	44 9.2 1-0.15	AL 9.3 2-12.75	New A	14 0 45	UNIT P/N	64.02	Dovie	INC.	Autority /				
9.3	Install access assy, backe	all access asso backe									-			-	-	
9.4	Using a 1" x 1/8" slot pu assemblies.	10.0	-40.1	10.2	Q.3			ANTIDIA DA	PARIJPATTERN	MA/DOAL		RECK LIST	1	TENCE VERIFED		
9.5	Install D-ring patch asser	11.0	44- 11,1	AL 11.2	Sill and	Part	19	171-90265-01-01	Windscreen Gare 1	5T12C2973-01	1	103.	500	107. C-07		0.0
10.0	INSPECT	Inspect	2-12-21	2012.45	1.12.95	A.205	/sa	171-90065-01-03	Windscreen Gore 2	\$112(2973-01	1	2983-24-7	0	1.115	oures	1914
10.1	Access assembly location with backer using the ce	12.0	Ø	20	O	٢		171-99065-01-05	Windkowon Gare 3	5712(2973-0)	1	3513-25-1	0	iners.	inip	6.4
	base toward the forwan	13.0	11.1		MACON	100000		171-90165-01-07	Windscreen Gore 4	ST12C2973-01	1	3982-25-1	0	in s	14380	E.Y.
10.2	Access assy: backer has b	Final	Lati					171-90065-01-09	Windscreen Gene 5	\$712(2973-01	1	3915-25-1	0	mit	100	1.1
10.3	D-ring patch assemblies shown in Section G-G.	inspec 14.0	1. 12.1	342	Caka Wat	(\mathbb{Q}_{1})		171-90055-01-11	Windscreen Gere 6	\$71202973-01	1	3953-35-1 3923-35-3 3903-34-4	0	lins	1515	5.0
11.0	INSTALL PRESSURE SENS	-	106	32.42	auns	39.485	-	171-90065-01-13	Windscreen Gore 7	ST18C2973-01	1	3981- 35 (Las.	1960	1097	19-46
	BLOWER MOUNT		-					171-90345-01-15	Windscrean Gore 8	ST12C2973-01	1	June 25-1	10X	2:45	"ANT	59
11.1	Punch a circular hole in assembly.	-	-		-		-	171-90065-01-17	Windstreen Gore 3	\$T12C2973-01	1	mont as a	0	CARD.	1000	5-5
11.2	Install pressure sensor p	1						AC YORN BOOM BIRDER THAT IS					BCODAR.	BE /634	in Later on	Chinese Colors

6 December 2011

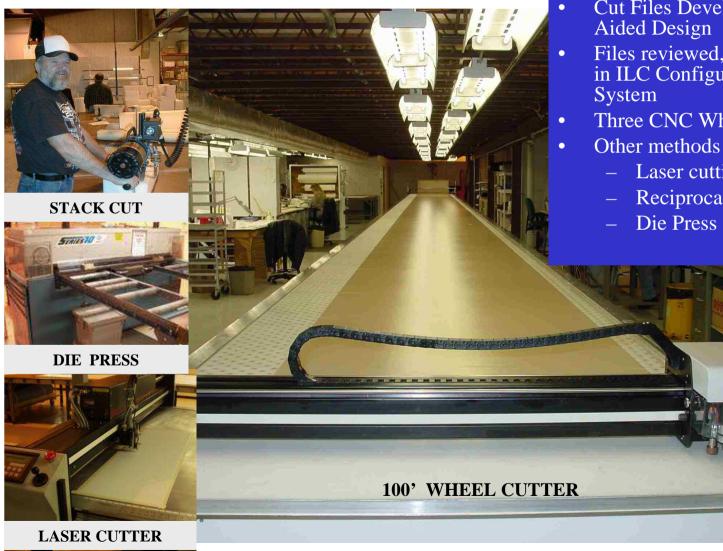
Fabrication Receiving Inspection

- Trained inspectors inspect all incoming material to specifications
- Certified mechanical inspectors who dimensionally check hardware including tooling to customer/drawing specifications
- Responsibilities:

C DOVER

creating what's next»

- Verify product meets or exceeds specifications through, visual/dimensional inspection
- Prepare and process any test requirements Review test data results for compliance
- Review supplier certifications
- Light box material for defects when specified
- Acceptance Testing performed by Test Lab
 - Complete Standard Fabric Test Capabilities



6 December 2011

Fabrication **Precision Cutting**

- Cut Files Developed using Computer
- Files reviewed, approved and released in ILC Configuration Management
- Three CNC Wheel Cutters
 - Laser cutting
 - Reciprocating knife

Fabrication Subassembly Fabrication

Fabrication Subassembly Installation

8' SEALER

Fabrication Panel Sealing

- Sealer: 8' Sealer or Step Sealer
- Gore is still flat following panel seaming and can be rolled up for storage and handling.

STEP SEALER

6 December 2011

GORE ROLLED AFTER

PANEL SEALING

Airships to the Arctic VI

WITH THE PROPERTY OF THE PROPE

TTTTT

28

_C DOVER creating what's next » Fabrication Gore Sealing

STEP SEALER

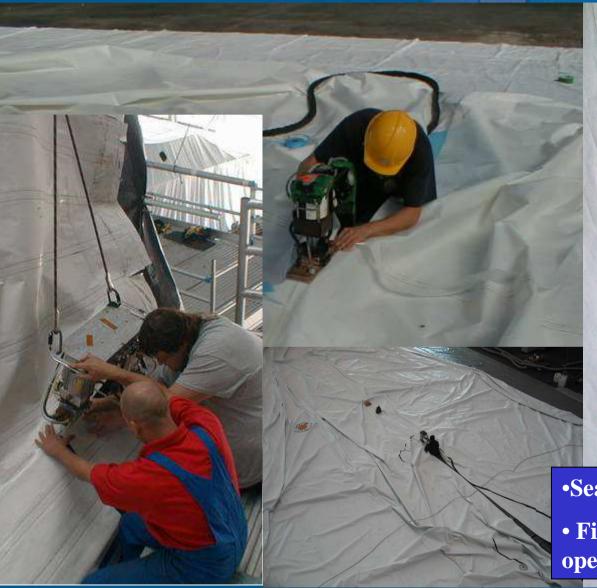
• Gore Seams are curved

- Sealer: Step Sealer or small portable sealer
- Assembly will no longer lay flat after joining two gores.

Fabrication Join Major Sections

Fabrication In Process Inspection and Test

- Daily Sample for Heat Seal and Adhesive Bonding
- 100% Visual inspection of all seams and installations
- Critical Subassemblies tested prior to integration


C DOVER

creating what's next >>

_C DOVER creating what's next >>>

Fabrication Final Closing Seam

•Sealer: Small portable sealer

• Final hit performed through a open port or with a release material

6 December 2011

Fabrication Packaging for Shipment

C DOVER

creating what's next »

• Envelope packed manually for shipment to checkout location.

• Envelope is packaged in protective film and transported in shipping container (ISO or export quality crate)

Fabrication Final Envelope Acceptance

• Final acceptance takes place offsite due to production building height limitations

- Typical acceptance testing includes:
 - Inspection
 - Proof Pressure Test
 - Leak Test

Further Considerations Materials

- 420K Aerostat requires:
 - ~ 2.5 acres of custom materials
 - ~ 12 miles of custom tapes

45.000 40,000 35,000 Hull Material 30,000 • Material Usage (yd2) 25,000 20,000 15,000 10,000 Ballonet Material 5,000 0 0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000 8,000,000 9,000,000 Hull Volume (ft3)

Airship Hull Size vs. Material Usage

- Current State of the Art LTA Materials are limited to ~ 60 " width
- Wider Materials are highly desirable for larger envelopes
 - Reduced Material cost
 - Reduced labor cost
- Larger Envelopes will need increase tensile, tear and seam performance
 - High Tenacity Fibers
 - Increased Adhesion for high _ load high durability seams

- The key to efficient large envelope fabrication is to minimize materials handling
- Envelope sections take up significant space (600,000 ft³ envelope requires > 30,000 ft² of floor space)
- Large and Typically Heavy In-Process section which require movement and folding during the production process
- Must allow for brief but significant manpower
 - Sections need to be properly staged
 - Precise scheduling to coordinate the manpower needs with the production demand

Further Considerations Final Assembly/Hangar Space

C DOVER

creating what's next >>>

- There are relatively few hangars big enough to inflate even small airships
- As ships increase in size the list drops of dramatically
- Larger Envelopes will likely be fabricated in transportable sections and final assembled at the integration and checkout site
- Assembly site can be co-located at the final assembly site
- Current airship designs are limited to the size and availability of the existing structures
- Selecting the Final Assembly/Integration site can be a Program driver and needs to be settled early in the program

Lakehurst 2 & 3

Timothy F. Miller Principal Design Engineer ILC Dover Frederica, DE 19946 USA www.ilcdover.com