Have Customers Benefited from Electricity Retail Competition?

Xuejuan Su

Department of Economics University of Alberta

Restructured Electricity Markets Conference Van Horne Institute May 29th, 2014



• In the 1990s, some U.S. states began restructuring their electricity retail markets.

- In the 1990s, some U.S. states began restructuring their electricity retail markets.
- Retail competition was introduced to replace traditional COS regulation, aided by "access regulation" of the transmission and distribution networks.

- In the 1990s, some U.S. states began restructuring their electricity retail markets.
- Retail competition was introduced to replace traditional COS regulation, aided by "access regulation" of the transmission and distribution networks.
- However, there is no guarantee that retail competition will lead to lower prices for customers:
 - Competition gives all firms an incentive to cut down costs;
 - The markup rate determined in the market place may be higher than the regulated rate of return.

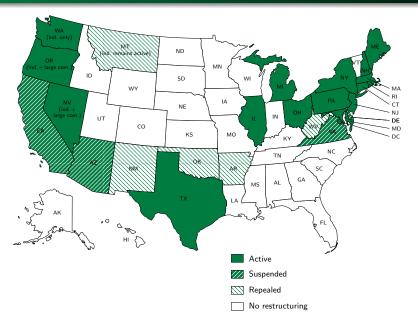
- In the 1990s, some U.S. states began restructuring their electricity retail markets.
- Retail competition was introduced to replace traditional COS regulation, aided by "access regulation" of the transmission and distribution networks.
- However, there is no guarantee that retail competition will lead to lower prices for customers:
 - Competition gives all firms an incentive to cut down costs;
 - The markup rate determined in the market place may be higher than the regulated rate of return.
- This paper empirically estimates the net policy impact on retail prices.

U.S. electricty market restructuirng

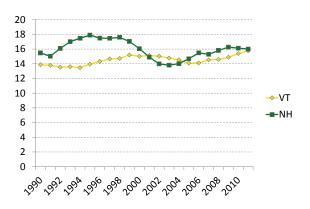
- Wholesale competition: 1992 Federal Energy Act and the following FERC orders.
 - Competition in electricity generation, facilitated by open access regulation of the transmission grid.

U.S. electricty market restructuirng

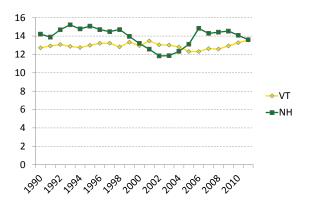
- Wholesale competition: 1992 Federal Energy Act and the following FERC orders.
 - Competition in electricity generation, facilitated by open access regulation of the transmission grid.
- Retail competition: State legislations, regulatory rulings, and/or court orders.
 - Competition in retail services, facilitated by open access regulation of the distribution network.

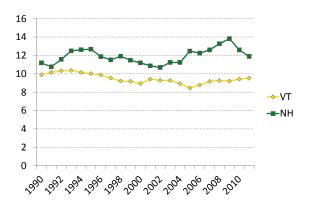

Related literature

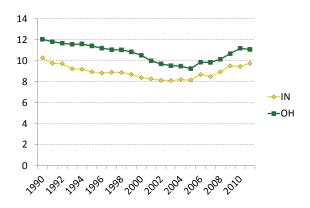
- Growing literature on the impact of wholesale competition
 - Generation cost savings: Kleit and Terrell (2001), Febrizio et al. (2007), Zhang (2007), Barmacck et al. (2007)
 - Market power: Borenstein and Bushnell (1999), Borenstein et al. (2002), Wolak (2003)

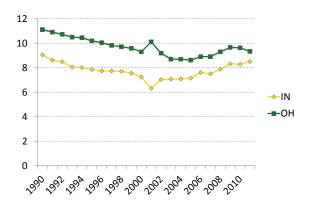

Related literature

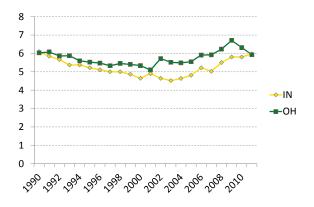
- Growing literature on the impact of wholesale competition
 - Generation cost savings: Kleit and Terrell (2001), Febrizio et al. (2007), Zhang (2007), Barmacck et al. (2007)
 - Market power: Borenstein and Bushnell (1999), Borenstein et al. (2002), Wolak (2003)
- Little concensus so far on the impact of retail competition on electricity prices
 - Apt (2005), Fagan (2006), Jaskow (2006)
 - Swadley and Yücel (2011)

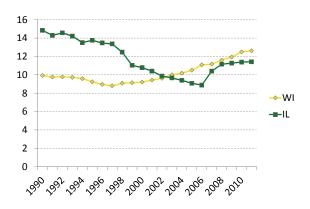

Electricity retail markets restructuring status, 2011

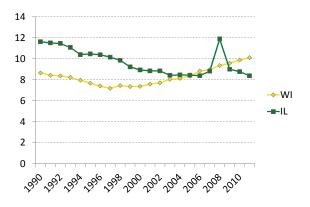

Average prices paid by residential customers: VT v. NH

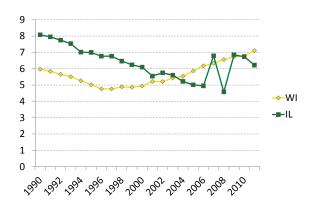

Average prices paid by commerical customers: VT v. NH


Average prices paid by industrial customers: VT v. NH

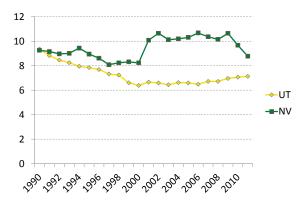

Average prices paid by residential customers: IN v. OH


Average prices paid by commerical customers: IN v. OH


Average prices paid by industrial customers: IN v. OH


Average prices paid by residential customers: WI v. IL


Average prices paid by commerical customers: WI v. IL


Average prices paid by industrial customers: WI v. IL

Average prices paid by residential customers: UT v. NV

Average prices paid by commerical customers: UT v. NV

Average prices paid by industrial customers: UT v. NV

Uniform policy impact

$$y_{st} = \alpha_s + \beta_t + \gamma R_{st} + \theta X_{st} + \varepsilon_{st}$$

Uniform policy impact

$$y_{st} = \alpha_s + \beta_t + \gamma R_{st} + \theta X_{st} + \varepsilon_{st}$$

- y_{st} is the average electricity retail price for state s in year t in real term (2009 dollar)
- α_s and β_t are state and year fixed effects
- R_{st} is the restructuring status for state s in year t, and γ is the parameter of interest
- \bullet X_{st} are supply and demand control variables
- ε_{st} is the residue term

Differntial policy impact

$$y_{st} = \alpha_s + \beta_t + \gamma^{\mathsf{SR}} R_{st}^{\mathsf{SR}} + \gamma^{\mathsf{LR}} R_{st}^{\mathsf{LR}} + \theta X_{st} + \varepsilon_{st}$$

Differntial policy impact

$$y_{st} = \alpha_s + \beta_t + \gamma^{\mathsf{SR}} R_{st}^{\mathsf{SR}} + \gamma^{\mathsf{LR}} R_{st}^{\mathsf{LR}} + \theta X_{st} + \varepsilon_{st}$$

- The entire period of retail competition is divided into a transitional and a post-transitional period
- The transitional period represents a hybrid regulatory regime of both incipient retail competition and direct price controls
- R_{st}^{SR} is a dummy for the transitional period since restructuring, so γ^{SR} measures the short run policy impact
- R_{st}^{LR} is a dummy for the post-transitional period, so γ^{LR} is the long run policy impact of retail competition

Identification: level vs slope difference

 DID relies on the "similar pattern" assumption between the treated and the control group, namely the prices patterns for states that pursued retail competition should be similar to those for students that decided against it

Identification: level vs slope difference

- DID relies on the "similar pattern" assumption between the treated and the control group, namely the prices patterns for states that pursued retail competition should be similar to those for students that decided against it
- The restructuring decision is not random but endogenous
 - Indeed the high-price states were more likely to pursue restructuring.
 - With state fixed effects, self selection based on the "level difference" is readily accounted for in the model
 - On the other hand, self selection based on "slope difference" will lead to biased results

Pre-treatment price patterns

$$y_{st} = \phi g_s + \beta_t + \delta(t \cdot g_s) + \theta X_{st} + \varepsilon_{st}$$

Pre-treatment price patterns

$$y_{st} = \phi g_s + \beta_t + \delta(t \cdot g_s) + \theta X_{st} + \varepsilon_{st}$$

- We focus on the time period before any states implemented any restructuring policies (pre-treatment).
- We compare the price patterns between the group of states that later pursued retail competition $(g_s = 1)$ and the group that did not $(g_s = 0)$.
- Any level difference, ϕ , can be readily accounted for in later DID analysis with state fixed effects α_s .
- Significant slope difference, δ , would raise concerns about potential bias in DID estimates.

EIA Data on state electricity retail markets

• State-level data on aggregate electricity retail sales quantity and revenue for 1990–2011.

EIA Data on state electricity retail markets

- State-level data on aggregate electricity retail sales quantity and revenue for 1990–2011.
- Broken down into three customer segments: residential, commercial, and industrial.
 - Calculate the average price for each segment respectively to minimize the impact of composition changes.

EIA Data on state electricity retail markets

- State-level data on aggregate electricity retail sales quantity and revenue for 1990–2011.
- Broken down into three customer segments: residential, commercial, and industrial.
 - Calculate the average price for each segment respectively to minimize the impact of composition changes.
- For each segment, total sales further divided between full services and restructured services.
 - Calculate the effective penetration rate of restructured services.

Restructuring status of states

- Track the effective date of retail competition for each restructuring state by customer segment.
 - Four states repealed their restructuring policies before they became effective.
 - Five more states suspended their restructuring policies after they were implemented for a period.

Restructuring status of states

- Track the effective date of retail competition for each restructuring state by customer segment.
 - Four states repealed their restructuring policies before they became effective.
 - Five more states suspended their restructuring policies after they were implemented for a period.
- The entire restructuring period can be divided into the transitional period and post-transitional period using 3-year or 5-year window.

Restructuring status of states

- Track the effective date of retail competition for each restructuring state by customer segment.
 - Four states repealed their restructuring policies before they became effective.
 - Five more states suspended their restructuring policies after they were implemented for a period.
- The entire restructuring period can be divided into the transitional period and post-transitional period using 3-year or 5-year window.
- Alternative data-based measure: effective penetration rates.

Number of restructuring states by year

Year	Residential	Commercial	Industrial	Full retail choice
1990–1996	0	0	0	0
1997	1	1	1	0
1998	5	5	6	3
1999	7	9	10	4
2000	11	12	13	7
2001	15	17	19	13
2002	17	19	21	16
2003	17	19	21	16
2004	17	19	21	17
2005	16	18	20	16
2006	16	18	20	16
2007	15	17	19	15
2008	14	16	18	14
2009	14	16	18	14
2010	14	16	18	14
2011	14	16	18	14
Total observations	193	218	243	179

Alternative measures of restructuring status

Year	Residential	Commercial	Industrial	Full retail choice
Observations in transitional/pos	t-transitional pe	eriod		
First 3 years	54	60	66	54
After first 3 years	139	158	177	125
First 5 years	89	99	109	87
After first 5 years	104	119	134	92
Observations with effective retain	il competition			
Revenue penetration $\geq 1\%$	104	193	230	n.a.
Revenue penetration $\geq 5\%$	56	161	201	n.a.
Revenue penetration $\geq 10\%$	35	130	172	n.a.
Quantity penetration $\geq 1\%$	103	194	237	n.a.
Quantity penetration $\geq 5\%$	56	160	207	n.a.
Quantity penetration $\geq 10\%$	35	138	160	n.a.

Summary Statistics

Variable			Mean	Std. Dev.	Min.	Max.
Total	(\$mil.)	Residential	2,181	2,549	90	16,649
revenue		Commercial	1,781	2,379	97	16,251
		Industrial	1,045	1,099	11	9,301
Restructured	(\$mil.)	Residential	32	152	0	1,644
revenue		Commercial	162	668	0	7,228
		Industrial	74	267	0	3,247
Total	(GWh)	Residential	23,385	23,641	1,480	145,654
sales		Commercial	20,889	22,234	1,450	128,214
		Industrial	19,672	18,916	216	108,300
Restructured	(GWh)	Residential	233	1,072	0	14,763
sales	-	Commercial	1,438	5,244	0	47,974
		Industrial	989	3,582	0	43,102

Summary Statistics

Variable			Mean	Std. Dev.	Min.	Max.
Average	(¢/kWh)	Residential	10.92	3.17	6.27	33.61
price		Commercial	9.56	2.86	5.17	31.37
		Industrial	6.88	2.69	3.17	27.52
Summer	(GW)	Coal	6.13	6.01	0	23.51
generation		Natural gas	5.31	9.82	0	73.22
capacity		Oil	1.25	2.18	0	14.80
		Nuclear	1.95	2.49	0	12.61
		Hydro	1.53	3.39	0	21.58
		Other	0.92	3.17 6. 2.86 5. 2.69 3. 6.01 9.82 2.18 2.49 3.39 1.62	0	11.57
		All sources	17.10	16.31	0.56	109.18
Personal income	(\$bil.)		197	239	12	1,623

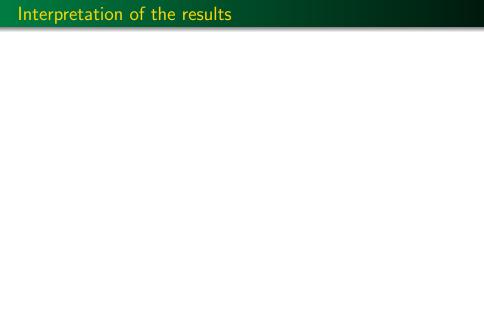
Pre-treatment analysis

		Reside	ential			Comm	nercial		Industrial				
Average price	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
$I(g_s=1)$	1.618 (0.63)**	1.418 (0.59)**	2.252 (0.77)***	1.932 (0.71)***	0.939 (0.57)	0.818 (0.55)	1.321 (0.69)*	1.163 (0.65)*	0.850 (0.55)	0.914 (0.53)*	1.363 (0.65)**	1.451 (0.62)**	
$t\cdot I(g_s=1)$		0.067 (0.06)		0.108 (0.07)		0.041 (0.04)		0.053 (0.05)		-0.021 (0.04)		-0.030 (0.04)	
Real income	1.251 (0.33)***	1.244 (0.33)***	1.000 (0.36)***	0.987 (0.37)**	0.978 (0.38)**	0.974 (0.39)**	0.805 (0.41)*	0.799 (0.41)*	0.709 (0.33)**	0.711 (0.33)**	0.530 (0.36)	0.534 (0.36)	
Coal	-0.264 (0.05)***	-0.264 (0.05)***	-0.237 (0.05)***	-0.236 (0.05)***	-0.219 (0.05)***	-0.219 (0.05)***	-0.202 (0.05)***	0.202 (0.05)***	-0.218 (0.05)***	-0.218 (0.05)***	-0.202 (0.05)***	-0.202 (0.05)***	
Natural gas	-0.083 (0.03)***	-0.083 (0.03)***	-0.069 (0.02)***	-0.068 (0.02)***	-0.063 (0.03)**	-0.063 (0.03)*	-0.052 (0.03)*	-0.051 (0.03)*	-0.057 (0.03)**	-0.057 (0.03)**	-0.045 (0.02)**	-0.045 (0.02)**	
Oil	-0.021 (0.13)	-0.018 (0.13)	0.004 (0.11)	0.009 (0.11)	-0.024 (0.15)	-0.023 (0.16)	-0.007 (0.14)	-0.004 (0.14)	0.002 (0.10)	0.001 (0.10)	0.007 (0.09)	0.006 (0.09)	
Nuclear	0.168 (0.08)**	0.168 (0.08)**	0.118 (0.07)	0.117 (0.07)	0.108 (0.10)	0.108 (0.10)	0.081 (0.09)	0.081 (0.09)	0.079 (0.09)	0.079 (0.09)	0.038	0.038	
Hydro	-0.352 (0.07)***	-0.351 (0.07)***	-0.314 (0.06)***	-0.312 (0.06)***	-0.300 (0.08)***	-0.300 (0.08)***	-0.279 (0.07)***	-0.279 (0.07)***	-0.320 (0.06)***	-0.320 (0.06)***	-0.324 (0.06)***	-0.324 (0.06)***	
Other	-0.453 (0.24)*	-0.450 (0.24)*	-0.348 (0.27)	-0.342 (0.28)	-0.190 (0.29)	-0.188 (0.29)	-0.113 (0.31)	-0.110 (0.31)	-0.119 (0.27)	-0.120 (0.27)	-0.028 (0.30)	-0.029 (0.30)	
N	357	357	322	322	357	357	322	322	357	357	322	322	
R^2	0.561	0.562	0.585	0.586	0.471	0.472	0.482	0.483	0.436	0.436	0.467	0.467	

Uniform policy impact

		Resid	ential			Com	mercial			Indu	strial	
Average price	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
Restructured	-0.537 (0.30)*	-0.560 (0.26)**	-0.635 (0.27)**	-0.714 (0.29)**	-0.012 (0.28)	0.002 (0.24)	-0.058 (0.24)	-0.060 (0.28)	0.197 (0.26)	0.218 (0.21)	0.146 (0.22)	0.262 (0.23)
Real income	0.039 (0.14)	0.046 (0.15)	-0.014 (0.13)	0.263 (0.23)	0.233 (0.16)	0.235 (0.17)	0.193 (0.15)	0.611 (0.21)***	0.235 (0.11)**	0.227 (0.11)**	0.224 (0.11)**	0.432 (0.22)*
Coal	-0.309 (0.15)**	-0.293 (0.14)**	-0.308 (0.14)**	-0.235 (0.14)	-0.075 (0.14)	-0.057 (0.12)	-0.073 (0.12)	0.009 (0.13)	-0.139 (0.11)	-0.130 (0.09)	-0.125 (0.09)	-0.080 (0.09)
Natural gas	-0.039 (0.06)	-0.004 (0.05)	-0.002 (0.05)	-0.005 (0.05)	-0.057 (0.05)	-0.024 (0.04)	-0.022 (0.04)	-0.036 (0.04)	-0.049 (0.05)	-0.012 (0.03)	-0.011 (0.04)	-0.013 (0.03)
Oil	0.122 (0.14)	0.044 (0.12)	0.049 (0.13)	0.086 (0.13)	0.151 (0.14)	0.082 (0.11)	0.078 (0.11)	0.126 (0.11)	0.241 (0.15)	0.173 (0.12)	0.168 (0.13)	0.213 (0.13)
Nuclear	0.057 (0.45)	0.064 (0.51)	0.075 (0.51)	0.032 (0.55)	-0.195 (0.23)	-0.178 (0.26)	-0.172 (0.26)	-0.230 (0.30)	-0.203 (0.23)	-0.172 (0.24)	-0.184 (0.24)	-0.201 (0.28)
Hydro	0.238 (0.25)	0.222 (0.29)	0.248 (0.26)	0.143 (0.27)	0.404 (0.31)	0.379 (0.33)	0.370 (0.32)	0.213 (0.31)	0.371 (0.33)	0.299 (0.31)	0.294 (0.31)	0.266 (0.33)
Other	-0.001 (0.15)	0.061 (0.11)	0.065 (0.11)	-0.012 (0.11)	-0.133 (0.12)	-0.075 (0.08)	-0.069 (0.08)	-0.164 (0.08)**	-0.104 (0.11)	-0.057 (0.07)	-0.063 (0.07)	-0.106 (0.08)
N	1,122	1,056	946	858	1,122	1,056	946	858	1,122	1,056	946	858
R^2	0.892	0.918	0.922	0.924	0.885	0.911	0.916	0.922	0.859	0.905	0.909	0.916

Differential policy impact


		Resid	lential			Comr	nercial			Indu	strial	
Average price	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
A. Use 3-year transitional	window											
Transitional	-0.855 (0.20)***	-0.930 (0.19)***	-0.964 (0.19)***	-1.125 (0.21)***	-0.348 (0.26)	-0.359 (0.27)	-0.378 (0.27)	-0.380 (0.34)	-0.094 (0.24)	-0.120 (0.24)	-0.136 (0.25)	0.002 (0.30)
Post-transitional	-0.365 (0.40)	-0.357 (0.34)	-0.451 (0.35)	-0.504 (0.38)	0.166 (0.35)	0.194 (0.29)	0.117 (0.29)	0.105 (0.31)	0.355 (0.33)	0.404 (0.24)	0.304 (0.25)	0.405 (0.26)*
Difference	0.490 (0.32)	0.573 (0.30)*	0.512 (0.30)*	0.620 (0.32)*	0.515 (0.32)	0.553 (0.30)*	0.495 (0.30)	0.486 (0.32)	0.449 (0.31)	0.524 (0.26)**	0.440 (0.27)	0.404 (0.29)
B. Use 5-year transitional	window											
Transitional	-0.941 (0.23)***	-1.009 (0.21)***	-1.053 (0.21)***	-1.213 (0.23)***	-0.307 (0.25)	-0.314 (0.24)	-0.346 (0.24)	-0.346 (0.31)	0.013 (0.25)	-0.068 (0.23)	-0.131 (0.24)	-0.005 (0.28)
Post-transitional	-0.071 (0.47)	-0.033 (0.42)	-0.141 (0.42)	-0.192 (0.46)	0.314 (0.41)	0.354 (0.34)	0.266 (0.34)	0.242 (0.36)	0.403 (0.37)	0.542 (0.28)*	0.467 (0.30)	0.566 (0.31)*
Difference	0.870 (0.39)**	0.976 (0.37)**	0.912 (0.37)**	1.021 (0.40)**	0.621 (0.37)*	0.669 (0.33)**	0.611 (0.33)*	0.589 (0.35)	0.390 (0.34)	0.610 (0.30)*	0.599 (0.32)*	0.571 (0.35)
C. Use linear trend in resi	ructured perio	od										
Restructured	-1.142 (0.25)***	-1.277 (0.23)***	-1.302 (0.24)***	-1.530 (0.27)***	-0.407 (0.28)	-0.486 (0.29)*	-0.500 (0.29)*	-0.487 (0.38)	-0.010 (0.30)	-0.232 (0.27)	-0.283 (0.27)	-0.180 (0.36)
Year since restructuring	0.113 (0.06)*	0.134	0.125	0.143	0.073	0.090	0.082	0.075	0.038	0.083	0.080	0.081

Fill retail choice

		Reside	ential			Comn	nercial		Industrial				
Average price	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
A. Uniform policy in	npact for the	entire rest	ructuring	period									
Restructured	-0.517 (0.31)	-0.538 (0.27)*	-0.618 (0.28)**	-0.664 (0.30)**	-0.147 (0.27)	-0.176 (0.23)	-0.243 (0.24)	-0.297 (0.24)	0.071 (0.27)	0.011 (0.22)	0.001 (0.23)	0.050 (0.24)	
B. Differential policy	y impact usii	ng the 3-yea	ar transitio	onal window									
Transitional	-0.910 (0.20)***		-1.028 (0.18)***	-1.128 (0.22)***	-0.573 (0.19)***	-0.631 (0.18)***	-0.664 (0.18)***	-0.684 (0.22)***	-0.414 (0.18)**	-0.499 (0.17)***	-0.478 (0.18)***	-0.426 (0.19)**	
Post-transitional	-0.275 (0.43)	-0.250 (0.38)	-0.352 (0.39)	-0.420 (0.40)	0.116 (0.39)	0.112 (0.34)	0.028 (0.34)	-0.094 (0.34)	0.370 (0.38)	0.334 (0.30)	0.311 (0.31)	0.300 (0.32)	
Difference	0.635 (0.35)*	0.743 (0.33)**	0.676 (0.32)**	0.708 (0.34)**	0.689 (0.37)*	0.743 (0.34)**	0.692 (0.34)**	0.590 (0.35)	0.785 (0.34)**	0.833 (0.26)***	0.789 (0.26)***	0.726 (0.26)***	
C. Differential policy	y impact usir	ng the 5-yea	ar transitio	nal window									
Transitional	-0.966 (0.24)***	-1.034 (0.21)***	-1.082 (0.22)***	-1.190 (0.25)***	-0.533 (0.20)**	-0.575 (0.20)***	-0.618 (0.20)***	-0.670 (0.24)***	-0.282 (0.22)	-0.417 (0.19)**	-0.404 (0.20)**	-0.397 (0.23)*	
Post-transitional	0.077 (0.51)	0.136 (0.46)	0.020 (0.47)	-0.086 (0.48)	0.363 (0.46)	0.366 (0.39)	0.270 (0.39)	0.112 (0.38)	0.537 (0.41)	0.593 (0.34)*	0.558 (0.34)	0.541 (0.34)	
Difference	1.043 (0.43)**	1.170 (0.41)***	1.101 (0.41)**	1.104 (0.42)**	0.896 (0.40)**	0.941 (0.35)**	0.888 (0.35)**	0.783 (0.36)**	0.820 (0.33)**	1.010 (0.28)***	0.962 (0.29)***	0.938 (0.28)**	

Effective penetration

		Resid	lential			Com	mercial		Industrial				
Average price	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
A. Restructured sales qua-	ntity penetra	tion, one-y	ear lag										
Penetration rate $\geq 1\%$	0.036 (0.44)	0.283 (0.45)	0.228 (0.45)	0.036 (0.51)	0.162 (0.36)	0.287 (0.30)	0.117 (0.30)	-0.090 (0.31)	0.361 (0.33)	0.417 (0.23)*	0.328 (0.23)	0.213	
Penetration rate $\geq 5\%$	0.318 (0.48)	0.577 (0.52)	0.529 (0.51)	0.510 (0.52)	0.333 (0.38)	0.432 (0.34)	0.319 (0.36)	0.176 (0.37)	0.481 (0.35)	0.537 (0.26)**	0.453 (0.26)*	0.283	
Penetration rate $\geq 10\%$	-0.336 (0.29)	-0.113 (0.29)	-0.168 (0.28)	-0.191 (0.29)	0.462 (0.36)	0.563 (0.32)*	0.487 (0.33)	0.186 (0.33)	0.639 (0.34)*	0.688 (0.26)**	0.595 (0.27)**	(0.26)	
B. Restructured sales reve	nue penetra	tion, one-ye	ear lag										
Penetration rate $\geq 1\%$	0.194 (0.48)	0.290 (0.47)	0.230 (0.47)	0.010 (0.53)	0.162 (0.36)	0.288 (0.31)	0.116 (0.32)	-0.094 (0.31)	0.359 (0.34)	0.429 (0.23)*	0.338 (0.24)	0.226 (0.23)	
Penetration rate $\geq 5\%$	0.238 (0.49)	0.484 (0.54)	0.431 (0.53)	0.408 (0.54)	0.310 (0.38)	0.406 (0.34)	0.286 (0.36)	0.137 (0.37)	0.486 (0.35)	0.555 (0.25)**	0.466 (0.26)*	0.336 (0.25)	
Penetration rate $\geq 10\%$	-0.336 (0.29)	-0.113 (0.29)	-0.168 (0.28)	-0.191 (0.29)	0.395 (0.37)	0.509 (0.33)	0.431 (0.34)	0.162 (0.33)	0.633 (0.34)*	0.688 (0.25)***	0.596 (0.26)**	0.465	

 Only residential customers have benefited from retail competition but not commercial or industrial customers.

- Only residential customers have benefited from retail competition but not commercial or industrial customers.
- Any restructuring benefit is front-loaded and driven by aggressive price controls during the transitional period

- Only residential customers have benefited from retail competition but not commercial or industrial customers.
- Any restructuring benefit is front-loaded and driven by aggressive price controls during the transitional period
- Search friction may be an important reason for the lack of long run benefits.

- Only residential customers have benefited from retail competition but not commercial or industrial customers.
- Any restructuring benefit is front-loaded and driven by aggressive price controls during the transitional period
- Search friction may be an important reason for the lack of long run benefits.

Thank you!