

MOREV Tool

Mineral Occurrence Revenue Estimation & Visualization Tool

Presented by: Colin Brooks, Research Scientist, MTRI

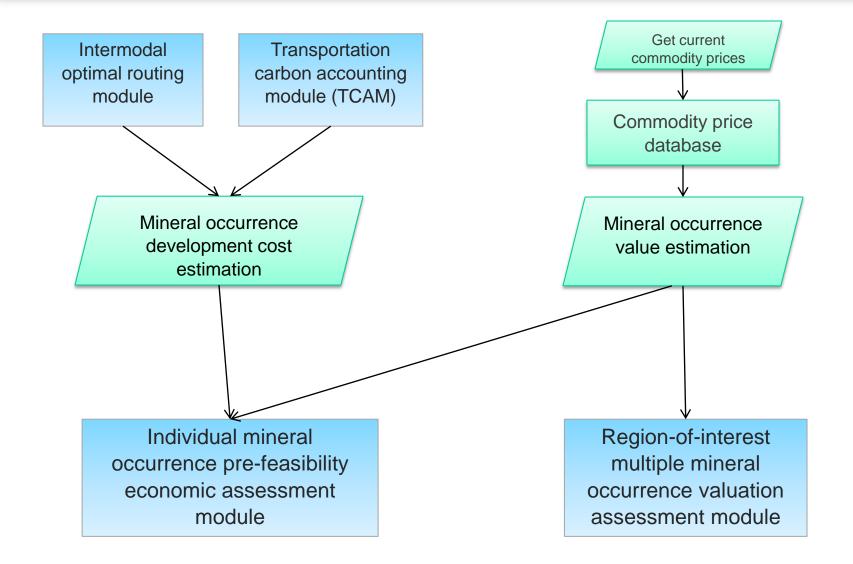
Michael Billmire, MTRI
Paul Metz, UAF
Robert Shuchman, MTRI
Helen Kourous-Harrigan, MTRI

www.mtri.org www.mtri.org/mineraloccurrence.html

What is the MOREV Tool?

- An ArcMap-based suite of tools developed in order to effectively assess and communicate the value of mineral occurrences within regions of interest in Alaska, Yukon Territory, and British Columbia
- Primary purpose: spatialized mineral occurrence valuation
- Auxiliary functions:
 - Pre-feasibility economic assessments of individual mineral occurrences
 - Ability to modify commodity prices, or use the most recently available commodity prices
 - Intermodal (road, rail, water) transportation network for optimal routing
 - e.g., how much does it cost to ship the ore to a processing facility in China?
 - Carbon emissions accounting from transportation

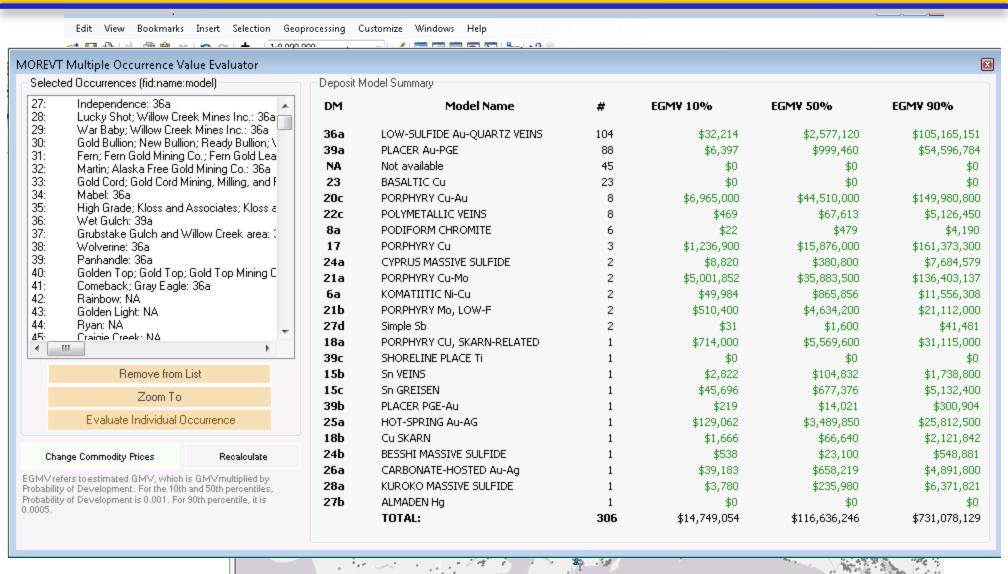
Potential Users



- Small to midsized exploration interests in pre-feasibility stages of project planning for new mining projects
- Transportation & infrastructure planners
 - -State & local government
- Potential for helping in permitting process
 - Example: Preparation of NI 43-101 mineral project disclosures in Canada
- Government agencies & resource database maintainers
- Investment community & lenders
- Researchers (geological, transportation, economic, etc.)

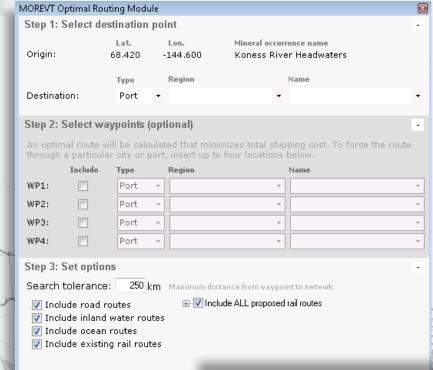
Tool Components

Example Single Mineral Occurrence Selection



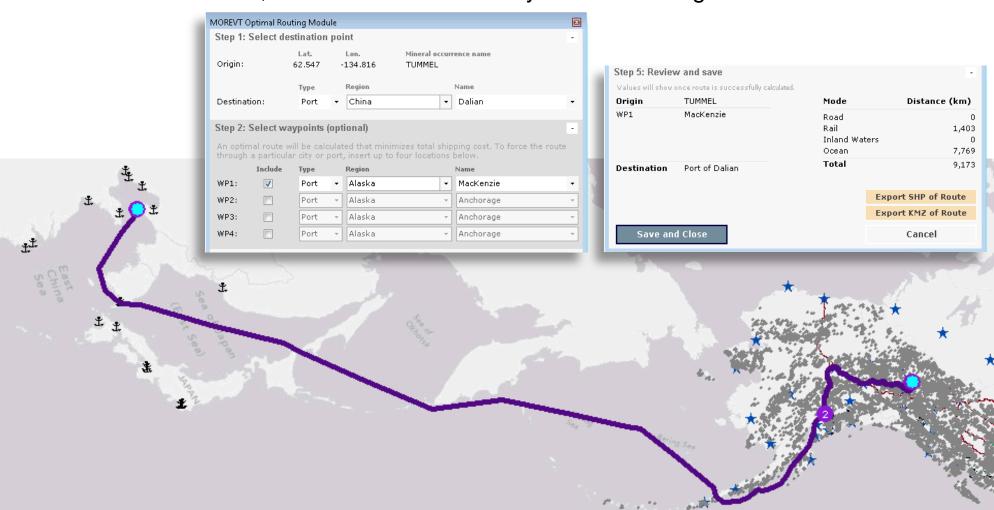
	- C	Save and Close	e Cancel Load Defaults				Show historical prices from: 2005 ▼								
		Double-click on a historica	al price to load th	hat price as						dities in deposit model: ALL ▼					
currences	Ш	Commodity	Value	Units	Source	Current	2011	2010	2009	2008	2007	2006	2005		
ting	F	Antimony	6.350	\$/lb	2011	4.87 (02-28-13)	6.350	4,700	2,220	2,560	2,567	2,381	1.606		
-	F	Asbestos	642,200	\$/ton	2010	0 (NA)	0.000	642,200	1,060.400	851.000	430,000	410,000	508.00		
osed	Tr	Barite	43,200	\$/ton	2010	0 (NA)	0.000	43,200	43,200	47.080	62,000	50,000	50.00		
	Ш	Chromite	1,396.000	\$/ton	2011	0 (NA)	1,396.000	1,360.000	1,612.000	3,496.000	2,096.000	1,390.000	1,368.00		
routes	r	Cobalt	18.900	\$/lb	2011	11.96 (03-09-13)	18,900	20,000	20,520	23,435	24,766	13,925	15.24		
ase I route:	−R	Copper	3,500	\$/lb	2011	3.44 (03-19-13)	3,500	3,500	2,240	2,780	3,280	3,147	1.73		
l route		Gold	1,770.000	\$/troz	2011	1607.66 (03-19-13)	1,770.000	1,225.029	962,030	907,530	696.718	606,518	444.78		
e route	R	Iridium	1,031.383	\$/troz	2011	1023 (03-19-13)	1,031.383	642,034	420,000	488,246	444,430	349,450	169.51		
enzie route		Iron	155.280	\$/ton	2011	0 (NA)	155,280	108,570	92,000	68,000	54.000	48,000	40.00		
ities	- In	Lead	1.233	\$/lb	2011	.98 (03-19-13)	1,233	1.089	0.862	1,153	1.238	0.776	0.6		
Ports		Manganese	260,000	\$/ton	2011	0 (NA)	260,000	1,221.071	1,140.000	0.000	0.000	0.000	0.0		
	-0	Mercury	1,082.098	\$/Hask	2010	0 (NA)	0.000	1,082.098	613,992	634,112	533,361	674.198	558.52		
work Layers		Molybdenum	14.500	\$/lb	2011	11.11 (03-19-13)	14,500	17,000	9,370	23,564	30,295	24,775	31.79		
workInterse	-In B	Nickel	8,800	\$/Ib	2011	7.58 (03-19-13)	8,800	10,000	6,548	12,453	16,874	10,977	6,66		
ge	Li	Niobium	5.518	\$/lb	2009	0 (NA)	0.000	0.000	5.518	12.638	10,523	7.394	7.29		
, i		Osmium	169.097	\$/troz	2011	0 (NA)	169.097	250,491	252,000	0.000	0.000	0.000	0.00		
twork_ND		Palladium	746,606	\$/tr oz	2011	1330.26 (03-19-13)	746,606	525,566	203,730	1,209.971	1,308.440	1,144.420	899.51		
		Phosphate	83,800	\$/ton	2011	0 (NA)	83,800	58,760	105,914	0.000	0.000	0.000	0,00		
		Platinum	1,748.023	\$/tr oz	2011	1742.83 (03-19-13)	1,748.023	1,608.960	1,084.590	846,538	357,340	322,930	203,54		
		Rare Earth Oxide	286.700	\$/lb	2009	0 (NA)	0.000	0.000	286,700	0.000	0.000	0.000	0.00		
Canvas		Rhodium	2,074.011	\$/tr oz	2011	1265 (03-19-13)	2,074.011	2,383.543	1,175.000	982,422	6,203.089	4,561.059	2,059.73		
		Silver	34.971	\$/tr oz	2011	28.83 (03-19-13)	34,971	20,229	14,430	15,329	17,107	11.602	7.34		
		Thorium-oxide	136.000	\$/lb	2009	0 (NA)	0.000	0.000	136.000	136.000	0.000	0.000	0,00		
		Tin	16.800	\$/lb	2011	10.49 (03-19-13)	16,800	10,250	6.070	8.881	8.981	5.670	4.80		
		Tungsten	136.000	\$/ton	2011	0 (NA)	136.000	136,000	136,000	157.800	158,800	166,000	118.00		
		Uranium	49,290	\$/Ib	2010	37.5 (03-14-13)	0.000	49,290	46,000	46,000	33,000	18,500	14.60		
		Zinc	1.120	\$/Ib	2011	.86 (03-19-13)	1,120	1.020	0.720	1,345	1.542	1.588	0.67		

Example Multiple Mineral Occurrence Selection

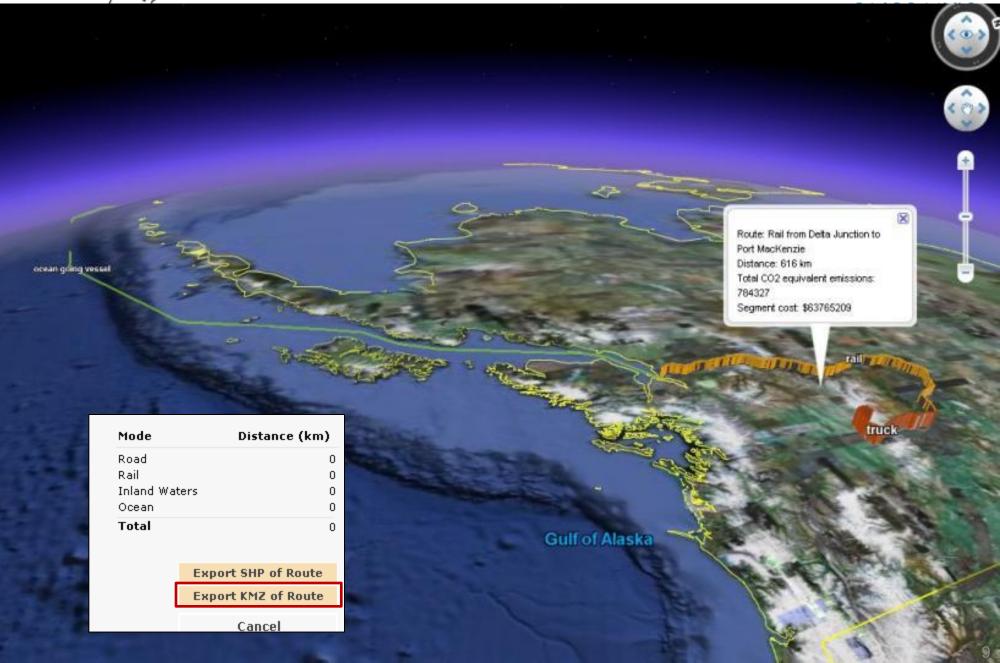

in element

Intermodal Optimal Routing Module

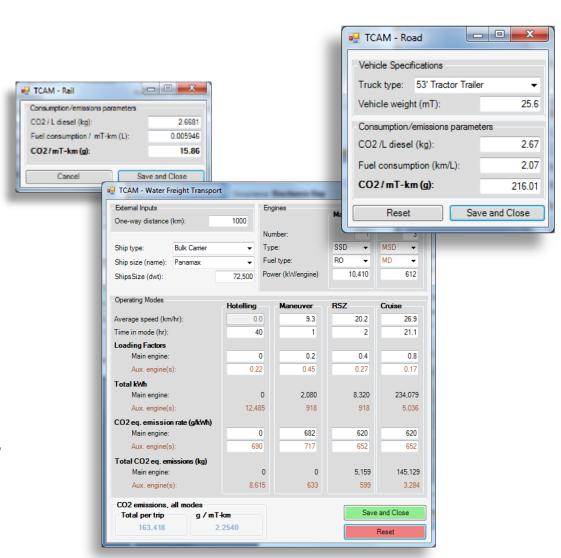
- A route is calculated from mineral occurrence origin to destination point (port, cities, or facilities in U.S., Canada or overseas)
- Most cost efficient route is automatically chosen, but user can force route through waypoints
- Like Google/Yahoo Maps! Except intermodal.



Intermodal Optimal Routing Module Users can choose origins & destinations


After a route is successfully calculated, you can review, export the route to SHP/KML, and save the values, which are loaded directly into the costing calculations

Route KML in Google Earth



Carbon Accounting

Transportation Carbon Accounting Module (TCAM)

- Rail, truck, barge, and OGV (ocean going vessel) emissions models are incorporated
- Mode-specific calculator forms show model assumptions and allow user-modification of default parameters
- Uses CO₂ equivalent values (includes:CO₂, CH₄, and N₂O)
- Sources for fuel consumption/emissions model data:
 - Rail: Association of American Railroads, US EPA
 - Truck: USDOT Federal Highway Administration, Vehicle Inventory and Use Survey (VIUS) 2002, US EPA
 - Water: MAN Diesel, European Environment Agency, US EPA, ICF International, Lloyd's Register

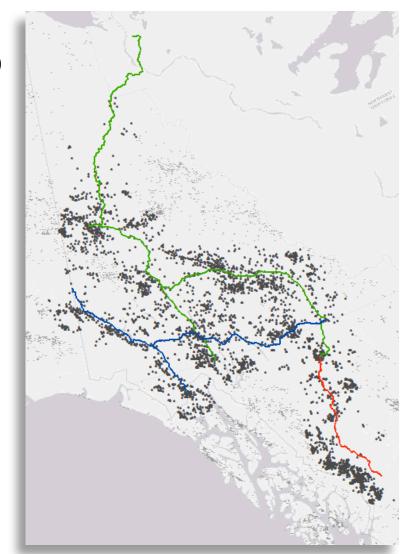
Example MOREV Tool Analyses:Alaska Pipeline Project

 We used the MOREV Tool to evaluate potential revenue from mineral occurrences within corridors of two separate pipeline routes

ENSTAR Bullet Line

Alaska Gasline Project

Model Code	Name	Metals	Amt	GMV (10th Perc.)	GMV (50th Perc.)	GMV (90th Perc.)
10	Carbonatite	Niobium - Rare Earth	1		\$9.329.300.739	\$38,420,308,16
26a	Carbonate-Hosted Au-Ag	Au-Ag	1	\$277	\$4,707	\$33,641
27b	Almaden Hg	Hg	1	\$0	\$0	\$C
30a	Sandstone-Hosted Pb-Zn	Pb-Zn-Ag	1	\$9,896	\$304,823	\$4,793,022
31b	Bedded Barite	Barite	1	\$1,489	\$30,713	\$260,597
38a	Lateritic Ni	Ni-Co	1	\$1,247,069	\$9,779,654	\$38,216,657
39b	Placer PGE-Au	Pt-Au-Os-Ir-PI	1	\$157	\$11,918	\$253,611
9	Alaskan PGE and Epiterthermal Veins	Pt	1	\$0	\$0	SC
14b	Sn Skarn	Sn	2	\$45,007	\$630,525	\$4,768,965
15b	Sn Veins	Sn	2	\$1,818	\$67,510	\$1,119,755
25g	Epithermal Mn	Mn	2	\$2,523	\$39,424	\$275,968
39c	Shoreline Placer Ti	Zr-Ti	2	\$149,486	\$7,742,151	\$152,147,019
6a	Komatitic Ni-Cu	Ni-Au-Cu	2	\$31,998	\$540,902	\$6,552,870
15c	Sn Greisen	Sn	3	\$44,141	\$654,326	\$4,957,754
20b	Sn-polymetallic veins	Au-Ag-Pb-Zn	3	\$0	\$0	\$C
32a	Mississippi Valley Zn-Pb	Pb-Zn	3	\$0	\$0	SC
24c	Volcanogenic Mn	Mn	4	\$7,065	\$207,528	\$2,343,891
31a	Sedimentary Exhalative Zn-Pb	Zn-Pb	4	\$469,315	\$9,963,579	\$106,186,580
18a	Porphyry Cu Skarn	Cu-Ag-Au-Mo	5	\$3,135,635	\$23,837,669	\$90,867,849
8d	Serpentine-Hosted Asbestos	Asbestos	6	\$61,078	\$588,154	\$2,950,605
18d	Fe Skarn	Fe	7	\$654,326	\$19,828,066	\$277,592,918
19a	Polymetallic Replacement	Pb-Zn-Cu-Ag-Au	7	\$57,062	\$1,872,126	\$30,815,076
18c	Zn-Pb Skarn	Zn-Pb-Cu	8	\$72,529	\$1,594,558	\$17,322,805
21a	Porphyry Cu-Mo	Cu-Mo-Au-Ag	8	\$15,788,676	\$110,237,308	\$397,001,891
21b	Porphyry Mo, Low F	Mo	9	\$1,789,382	\$16,246,773	\$74,015,336
25a	Hot Spring Au-Ag	Au-Ag	12	\$0	\$0	SC
17	Porphyry Cu	Cu-Ag-Au-Mo	19	\$6,709,091	\$86,823,819	\$632,182,850
34c	Phosphates	P2O5-P	19	\$0	\$0	50
20c	Porphyry Cu-Au	Cu-Au-Ag-Mo	23	\$11,927,285	\$67,332,511	\$202,579,108
14a	W Skarn	W	24	\$9,738	\$422,162	\$8,821,286
24b	Besshi Massive Sulphide	Cu-Ag-Au-Pb-Zn	28	\$13,550	\$574,074	\$11,034,567
8a	Podiform Chromite	Cr	33	\$82,492,478	\$10,453,592,312	\$59,085,521,764
18b	Cu Skarn	Cu-Ag-Au	34	\$35,981	\$1,442,311	\$27,864,929
27d	Simple Sb Deposits	Sb-Ag-Au	34	\$138	\$7,222	\$186,206
5b	Noril'sk Cu-Ni-PGE	Au-Pd-Pt	50	\$0	\$0	SC
24a	Cyprus Massive Sulphide	Cu-Ag-Au-Pb-Zn	52	\$206,510	\$8,853,963	\$115,958,480
28a	Kuroko Massive Sulphide	Cu-Pb-Zn-Au-Ag	79	\$344,782	\$14,664,440	\$285,809,883
23	Basaltic Copper	Au-Ag-Cu-Ni-Zn-Co	88	\$0	\$0	\$C
22c	Polymetallic Veins	Ag-Au-Pb-Zn-Cu	115	\$1,596	\$152,342	\$7,481,083
36a	Low Sulfide Au-Quartz Veins	Au-Ag	367	\$591	\$47,265	\$6,399,194
	No Description		405	\$0	\$0	\$0
39a	Placer Au-PGE	Au-Ag	520	\$3,309	\$39,426	\$2,150,505
	TOTALS		1987	\$897,109,410	\$20,167,434,999	\$100.018.774.830



Example MOREV Tool Analyses:Klondike Highway Freight Forecasts

- We provided estimated freight volumes from mineral occurrence development to the Alaska Department of Transportation (AKDOT) for their 20 year freight forecasts.
- These forecasts are used to inform the toll rates required to pay for highway maintenance

BC Highway 37													
Corridor length (km)	461												
Mineral Occurrence Summary													
# w/in corridor	1357												
# w/ assigned DMs	730												
# w/ quantified DMs	711		unquant	ified DMs	in gray	italics							
	Freight Volume by Mineral Occurrence (mT/day)												
			10th Percentile			50th Percentile				90th Percentile			
		per occ	urrence	all occu	rrences	per occi	urrence	all occur	rences	per occ	urrence	all occur	rences
Deposit model	#	Above	Under	Above	Under	Above	Under	Above	Under	Above	Under	Above	Under
NA	627	0	0	0	0	0	0	0	0				
22c	544	0.2	0.3	109	163	9	8	4733	4134	272	180	147968	9808
17	67	38.6	17.3	2586	1159	246	93	16469	6211	1683	532	112761	3563
36a	31	0	0	0	0	0	0	0	0	0	0	0	
21b	23	3.6	1.6	83	37	17	7	400	156	85	28	1946	6
39a	22	0	0	0	0	0	0	0	0	0	0	0	
18a	21	65.7	29.3	1380	615	310	123	6514	2579	1497	526	31435	1104
22a	19	0	0	0	0	0	0	0	0				
23	2	143	100.6	286	201	1214	644	2428	1287	2932	1383	5864	276
18b	1	1.4	1.1	1	1	22	13	22	13	311	149	311	14
TOTAL	1357			4,445	2,177			30,565	14,381			300,285	148,33
Normalized by PoD (mT/day)				4.4	2.2			30.6	14.4			300.3	148
Mean per quantified DM (mT/day)				0.0065	0.0032			0.0430	0.0202			0.4358	0.215
Annual projected (mT/yr)				1,600	784			11,004	5,177			108,103	53,40
Annual projected (mT/km/yr)				3.5	1.7			23.9	11.2			234.5	115.8

Contact Information

Colin Brooks

MTRI Research Scientist & Environmental Science Lab Manager colin.brooks@mtu.edu
Phone 734-913-6858
Fax 734-913-6880

Paul Metz, Ph.D.

Professor, P.E., Geological Engineering University of Alaska Fairbanks

ffpam@uaf.edu

Phone: (907) 474-6749

http://www.alaska.edu/uaf/cem/ge/people/metz.xml

Michael Billmire

MTRI Research Scientist mgbillmi@mtu.edu
Phone 734-913-6853

Michigan Technological University

www.mtri.org www.mtri.org/mineraloccurrence.html