

Session 2: Emergency Response When an emergency occurs, how do we respond?.

Modeling of the Mitigation Network for Natural Disasters Example: Prairie Tornadoes

Prof. S.C. Wirasinghe (Academic Director, Center for Transportation, Van Horne Institute) Ms. Samanthi W. Durage Prof. Janaka Ruwanpura

> Department of Civil Engineering, Schulich School of Engineering University of Calgary

What is a Disaster/Catastrophe/Calamity?

OXFORD ENGLISH DICTIONARY DEFINITION:

DISASTER: a sudden accident or a natural catastrophe that causes great damage or loss of life

CATASTROPHE: an event causing great and usually sudden damage or suffering; a disaster

CALAMITY: an event causing great and often sudden damage or distress; a disaster

What is a Natural Disaster/Catastrophe/Calamity?

TRIAL DEFINITIONS:

DISASTER: a natural event that causes damage as well as distress, suffering and/or loss of life (e.g. Haiti earthquake, 2010) CANADA: F3-5 tornadoes?

CATASTROPHE: a disaster followed immediately by another disaster OR major infrastructure failure that cause significant damage and loss of life > x (e.g. Tsunda Trench earthquake + Indian Ocean Tsunami , 2004; OR Loma Prieta earthquake + collapse of Cypress Street Viaduct , 1989)

CANADA: Major flood + dam failure?

CALAMITY: a disaster followed immediately by one or more disasters as well as major infrastructure failure that cause massive damage and loss of life >y (e.g. East Japan earthquake, tsunami and nuclear reactor failure, 2011)

CANADA: Cascadias fault earthquake + tsunami +?

END OF THE WORLD:

large asteroid strike (Chixculub asteroid, -65M years)

DISASTER MITIGATION

• PRE DISASTER

• DURING DISASTER

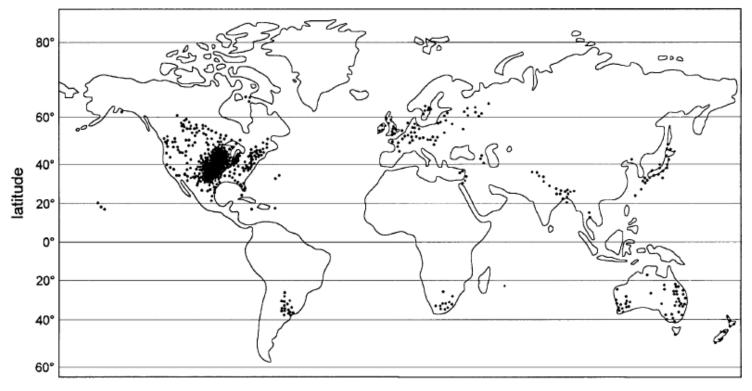
• AFTER DISASTER

DISASTER MITIGATION

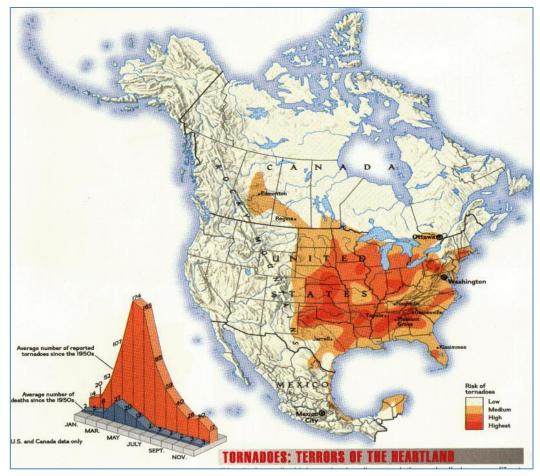
- CONTINUOUS PRE PLANNING
- INSTALLATION OF PLANS, "SAFEGUARDS", DETECTION & WARNING SYSTEMS
- REAL-TIME MANAGEMENT
- IMMEDIATE & POST-DISASTER RESCUE
- MEDIUM TERM RECOVERY
- LONG TERM RECOVERY
- UPDATING OF "PRE-PLANNING" ACTIVITY
- CULTURAL CHANGE

Background

Т Ο R Ν A D Ο Ε S

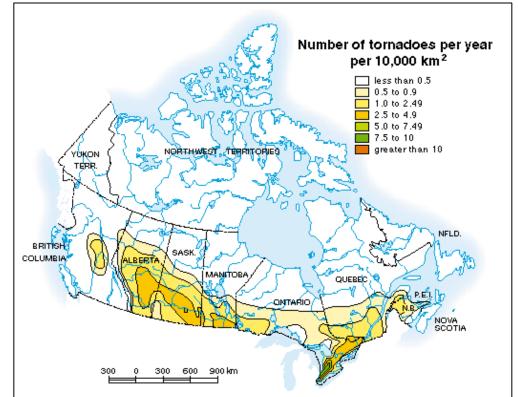


What is a Tornado


- A violently rotating column of air that extends from a thunderstorm cloud to the earth's surface
- Usually occurs where cold fronts clash with warm fronts
- Can move at speeds of 50-200 km/hour
- Localized and short-lived phenomenon
- Usually associated with black skies, strong winds, lightning, thunder and heavy rain or hail
- Has a high potential to create enormous damage to property and large number of deaths and injuries

Worldwide Occurrence of Tornadoes

Source: (Goliger and Milford, 1998)

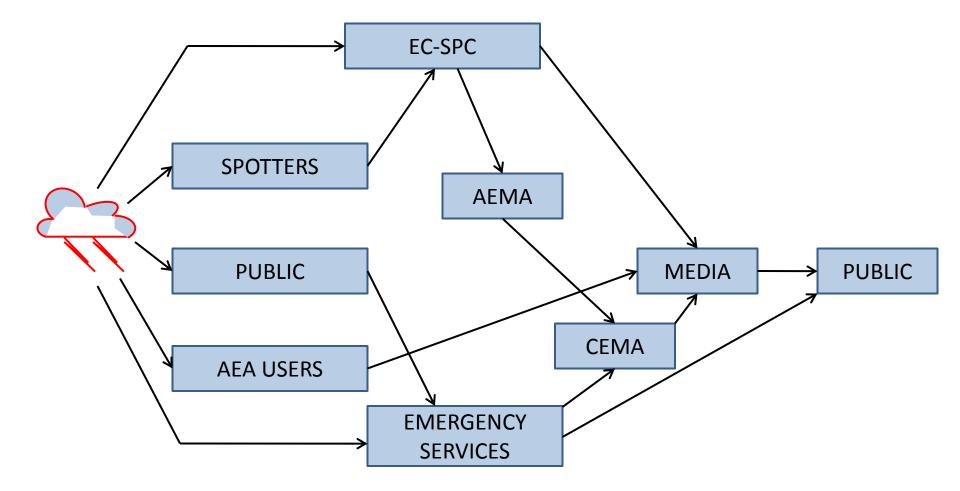

Tornado Distribution in North America

Source: (Grosvenor et al, 1998)

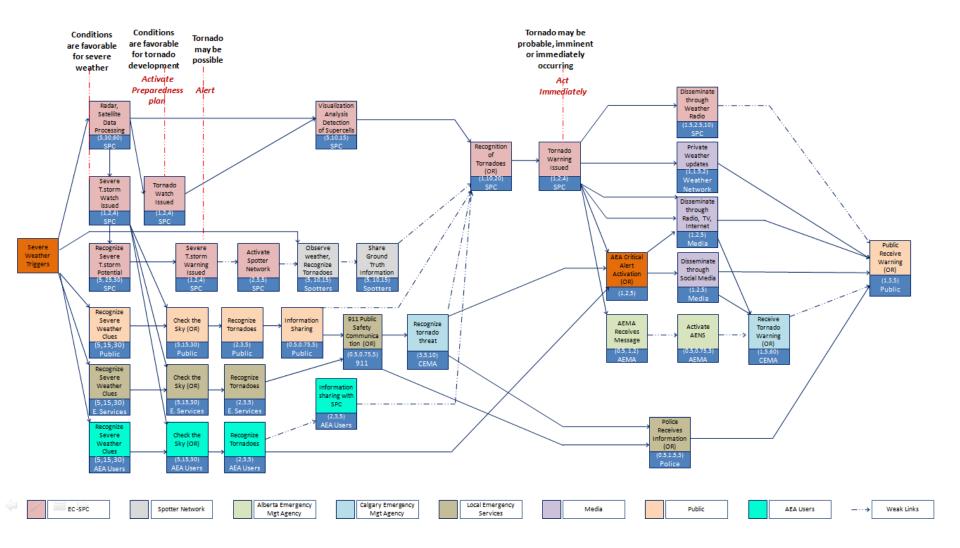
Tornado Contour Map in Canada

- Two main clusters of tornado-prone regions
- Approximately 36 tornadoes are reported on annually on average in the prairie region
- Disastrous impacts on highly populated, industrialized or agricultural areas

Source: Natural Resources Canada (2007)

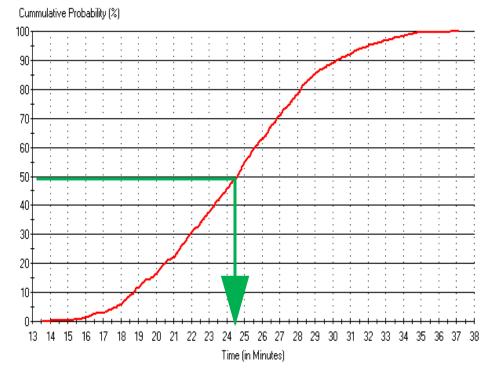

Tornado Warnings

- Warnings are the culmination of a sequence of actions ... that act to alert the public to a heightened probability of highimpact weather, minutes, hours or even days in advance" (Stensrud et al., 2009).
- Tornado warning is issued "when a tornado has been reported; or when there is evidence based on radar, or from a reliable spotter that a tornado is imminent" (EC, 2012).


Collaborating Partners

- Environment Canada Prairie and Arctic Storm Prediction
 Centre
- Spotter Network
- Alberta Emergency Management Agency
- Alberta Emergency Alert –Authorized Users
- Calgary Emergency Management Agency
- Police, emergency services
- Local Radio and Television, Internet, Social networks
- Public

Warning Partnerships

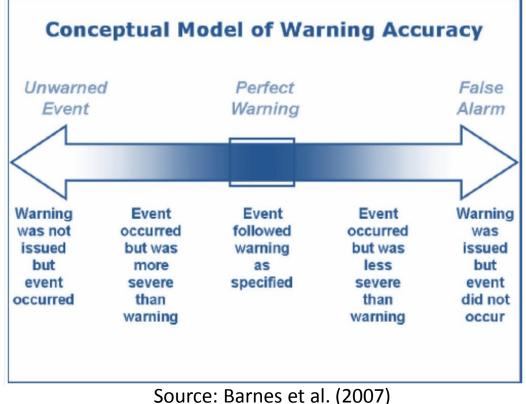


Tornado Detection, Warning and Communication Network

Simulation Output Results

- There is a 50% chance that tornado detection, warning and communication can be completed within 25 minutes or less.
- The maximum time predicted through simulation is about 37 minutes.

Warning Related Issues


- Hard to predict
- Short warning lead times
- Uncertainty in predicting actual paths, size of forecast regions
- Warning for a large area although impacts are localized
- False warnings
- Missed events

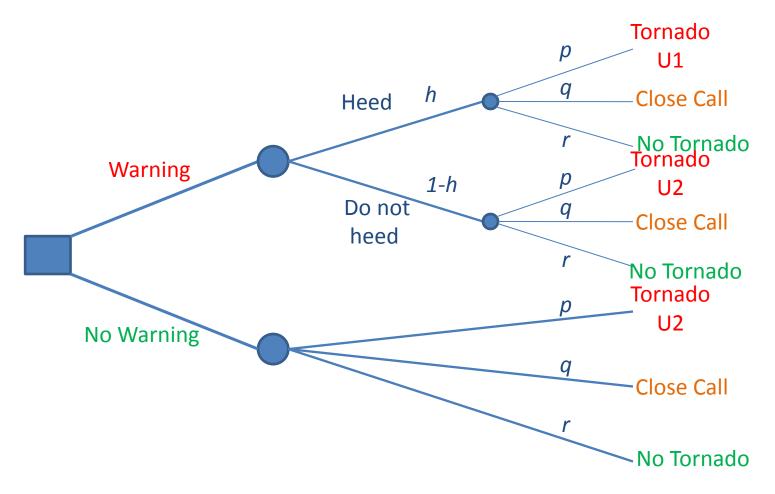
False Warnings

False warnings can be recognized as communications regarding tornado events that have been forecasted but not actually occurred.

	Tornado	No Tornado
Warning Given	True Warning	False Warning
No Warning Given	Missed Event	Status Quo

Conceptual Model of Warning Accuracy

(c)American Meteorological Society.


 Instead of having a yes-no categorization of warnings, this spectrum is used to demonstrate the range of accuracy of warnings.

Probability of False Warnings

Year	Number of tornado warnings	Joint occurrence of a tornado and a warning issuance	Number of false warnings
2010	190	8	182
2011	76	7	69
Total	266	15	251

- Individual tornado occurrence reports were compared with the tornado warning records to determine the joint occurrence of a tornado and a warning issuance.
- Absence of such an intersection for a warning is counted as a false warning record.
- False warning probability 251/266 = 94.3%

Warning Decision Tree for a Tornado

E(W) = hp(U1)+(1-h)p(U2); E(NW)=p(U2)

Conclusion

- We must prepare even for events that have not occurred in millennia.
- Systems in place to mitigate disaster impacts are very complex and involve multiple federal/provincial/local agencies.
- "Dry runs" of disaster mitigation systems are costly and may not always highlight weaknesses.
- Modeling the current mitigation network and Monte Carlo simulation provides an economical tool for assessing its reliability and pin pointing deficiencies.

Acknowledgements

- Calgary Emergency Management Agency (CEMA)
 Chief Bruce Burrell
- NSERC
- Schulich School of Engineering, University of Calgary
- Association of Professional Engineers and Geoscientists of Alberta (APEGA)
- Van Horne Institute