NSERC PARTNERSHIP WORKSHOP

ENHANCING INTERMODAL PASSENGER TRAVEL IN CANADA

Amer Shalaby, Ph.D., P.Eng. Department of Civil Engineering, University of Toronto

Overall Research Scope

Transit Research Streams

Transit System Analysis	 Conduct detailed investigations of existing transit services to improve our understanding of system performance
Transit ITS	 Develop and test new ITS solutions to improve the
Solutions	quality and efficiency of our transit systems
Transit Service	 Develop new decision support tools to facilitate
Planning	effective planning of modern transit systems
Transfers in Public Transit	 Develop analytical tools for effective planning and management of intra-modal and inter-modal transfer systems

Quick Facts about the GTA

- Located in Southwestern Ontario
- Consists of City of Toronto plus 4 regions
- 25 municipalities

- □ 5+ million residents largest in Canada and 5th largest in NA
- □ 7,100 Km²

Rail Rapid Transit and Freeways

Toronto Rail Network

Intermodal Research Overview

- Supply side research
 - Transfer management
 - Schedule coordination
 - Connection protection
 - Flex-route transit
 - Transfer station dynamics
- Demand side research
 - Mode choice modelling
 - Transit assignment modelling

Transfer Management

- Project sponsored by Transport Canada and MTO (2006-08)
- Transfer between a Commuter Rail/Bus and a Local Bus Route

Transfer Management Schedule Coordination

- Objective to schedule transit services at transfer locations in a coordinated manner so as to reduce the overall disutility of transfers for affected passengers
- Modifying (shifting) the existing schedule of a transit route
 - Find an offset value that minimizes overall expected transfer time

Transfer Management Schedule Coordination

12

Transfer Management Schedule Coordination

Revised Schedule (Shifted by 5 min.)

Transfer Management Connection Protection

14

- Project sponsored by Transport Canada and MTO (2006-2008)
- Objective is to protect transfers from one transit line to another transit line where the scheduled timed transfer (i.e. connection) has been broken
- The delay of commuter rail (beyond the scheduled departure time of local transit) results in the failure of the coordinated transfer
- CP control would hold local transit vehicle for the late transfer passengers

Transfer Management Connection Protection

Step-1) Activate CP control (when a planned coordination is broken)

Step-2) Predict the arrival time of commuter transit

15

Step-3) Make a holding decision and apply it to local transit

Transfer Management Connection Protection

- 16
- □ When Feeder is delayed, if we hold Receiver (Bus i)...
 - 1. Waiting time of passengers who transfer to Bus i at Stop $k: \ensuremath{\textbf{Benefit}}$
 - 2. Waiting time of passengers in Bus i : Cost
 - 3. Waiting time of passengers who wait for Bus i at downstream stops : Cost

Amer Shalaby, Ph.D., P.Eng.

Flex-route Transit Scheduling

Project sponsored by Transport Canada and MTO (2006-08)

Developed a dynamic scheduling system based on optimizing an objective function of maximizing the number of accepted requests and minimizing the delay for fixed-route passengers

Transfer Station Dynamics PnR-Sim

- 18
- Simulation model of the vehicle and passenger dynamics in parkand-ride lots

Features

- Provides a platform for the assessment of alternative P&R lot designs
- Provides accurate estimates of transfer times between auto and transit
- Based on Cellular Automota approach

Case Study of Kipling South Lot

Parking Lot Occupation Pattern

Assessment of Entrance Modification

existing design

proposed design

Improvement in queue times at the lot entrance by 37%

Transfer Station Dynamics Integrated Crowd and Train Simulation

- Project sponsored partially by an NSERC ENGAGE grant in collaboration with ARUP Canada (includes a summer student supported by the NSERC USRA program)
- Short term objective is to enhance ARUP's MassMotion ability to simulate vertical crowd movements in major transit terminals
- Longer term objective is to develop a flexible and scalable framework to allow for network wide analysis of crowd movement through transit networks
- Analysis of delay propagation based on high congestion and unexpected disruptions

Enhanced Mode Choice Modelling of Inter-Regional Trips

Enhanced Mode Choice Modelling of Inter-Regional Trips

MILATRAS: MIcrosimulation Learning-based Approach to TRansit Assignment

MILATRAS is a new transit assignment model designed to support modern transit planning

- Transit assignment backgrounder
 - Transit assignment is a procedure that assigns an Origin-Destination trip table to the transit network
 - TA's main output is passenger volumes on individual transit lines and routes
 - Transit assignment models are useful for both service planning and long-range planning

MILATRAS

- MILATRAS is designed to address the common limitations of existing methods such as
 - Improper representation of service congestion effects and capacity constraints
 - Poor representation of dynamic effects (real time, within day, and day-to-day)
 - Inadequacy for transit systems of medium-to-low frequency services
 - Poor sensitivity to effects of ITS technologies on passenger behaviour
 - Poor treatment of stop choice and departure time choice

MILATRAS

- Microsimulates both the transit network operations and the individual passengers
- Includes a "cognitive" model that represents the evolution of the user's knowledge and learning of the system through trip experiences over time
- Models stop choice, path choice and departure time choice simultaneously using learning-based techniques
- Built on an integrated microsimulation and GIS platform
- Detailed outputs at the network, route, run, stop and passenger levels
- Suitable for assessment and design of modern transit systems and ITS technologies
- Easier to explain results to stakeholders