Methods to enhance inter and intra modal transfers

UNIVERSITY OF WATERLOO
uwaterloo.ca

Outline

Intermodal network planning and operations - what has changed?

- Information!!!

Three examples:

- Reducing variability of bus arrival times when operating in shared ROW
- Connected Vehicle applications
- Modelling travel behaviour

Bus operations in shared ROW

UNIVERSITY OF
WATERLOO

Schedule adherence

- Function of:
- Intersection delays
- Dwell times
- Weather
- Incidents
- Driver characteristics
- Traffic conditions

Impact of Signalized Intersections

- Bus Scheduled/On-Call Stop
- Unscheduled Stop

UNIVERSITY OF
Travel Time

Transit Priority Measures

Impact:

- Mean delay
- Variance of delay

Where to implement?

- However, where should these treatments be applied?
- Require reliable data to quantify delays.
- Current methods:

1. field observation;
2. simulation;
3. analytical methods.

Use of AVL/APC data

unversity of
WATERLOO

Theoretical foundation

- Deterministic under-saturated queuing

unversity of WATERLOO

Proposed Methodology

Proposed Methodology

unvasitros WATERLOO

GIS Data

- Transit routes
- Signalized intersections
unvestity or WATERLOO

Segmenting

UNIVERSITY OF WATERLOO

UNIVERSITY OF WATERLOO

unverstry of WATERLOO

UNIVERSITY OF WATERLOO

unversity of WATERLOO

Route	Direction	Intersection	Mean delay (seconds)	Std (s)	COV	90 \% delay (seconds)	Queue Length (metres)	Proportion of trips with identified sional delay	Sample size	Total number of service trips	Segment length (metres)
10	up	HOMER WATSON @ Manitou Doon Village	34	25	0.7	69	91	81\%	201	217	467
10	down	FAIRWAY@ Wilson	32	28	0.9	65	120	71\%	258	214	165
13	WB	FISCHERHALLMAN @ Columbia	26	19	0.7	51	273	76\%	250	230	721
201	up	ERB @ FischerHallman	22	22	1	55	75	65\%	231	314	534
201	dn	FISCHERHALLMAN @ Queens	18	20	1.1	48	120	55\%	213	319	184
53	OB	DUNDAS @ Main	18	21	1.2	52	90	55\%	131	225	374
1	ob	QUEEN @ Charles	15	18	1.2	40	91	44\%	180	330	106
200	dn	HESPELER @ Dunbar	14	21	1.5	49	91	46\%	363	658	684
11	IB	KING @ Stirling	14	22	1.6	51	88	29\%	84	252	123
11	OB	OTTAWA @ Alpine	11	15	1.4	36	60	54\%	182	248	196

UNIVERSITY OF WATERLOO

Prioritized on the basis of Index

UNIVERSITY OF

What type of priority treatment?

- Examine characteristics of intersection
- E.g. turning movement being made by transit vehicle
- Geometry
- Estimates queue length
- Signal timings
- Location of upstream and downstream bus stops
- Options:
- Queue jump lane
- Special transit phase
- TSP

Estimating impact of TSP

Connected Vehicles

- US DOT CV program
- Integrated Dynamic Transit Operations (IDTO)
- Enable travellers to "reserve" a connection
- In real-time system can evaluate number of reservation from passengers on the inbound transit unit and decide if outbound TU should wait.
- Wide range of possible approaches but much work to still do!

Thank you!

Q\&A

