INTERMODAL PASSENGER TRAVEL WORKSHOP MONTREAL, CANADA

RESEARCH ON INTERMODAL TRANSPORTATION

Presented by Paul Schonfeld

May 31- June 1, 2012

- Selected Research on Intermodal Transportation
- Integration of Conventional and Flexible Bus Services
- General Thoughts on Intermodal Passenger
 Transportation

Selected Research on Intermodal Transportation

Selected Research

- Transfers in transportation terminals, with K. T. Lee, C. Chang, Y. M. Kim
- Optimization of intermodal transit networks, with Steven Chien
- □ Transfer coordination in transit networks, with Ching Jung Ting
- Air express network design with hub sorting, with Somnuk Ngamchai
- Intermodal transfer coordination in logistic networks, with Frank Chen
- Integration of conventional and flexible bus services, with Edward Kim
- Scheduling under uncertainty for logistic systems, with Nikola Markovic
- Recovery from major disruptions in multi-terminal logistic systems, with N.
 Markovic
- Coordination of dial-a-ride, taxi, and conventional transit systems, with E. Kim and N. Markovic

Integration of Conventional and Flexible Bus Services

By Edward Kim and Paul Schonfeld

Background & Motivation

Conceptual Basis for Transitions among Service Types

Background & Motivation

□ Typical demand distribution → How to serve it ?

Background & Motivation

Conventional Bus (=Fixed Route, Fixed Schedule Service)

- Includes access cost
- Lower avg. supplier cost
- Suitable for high demand densities

(= Demand-Responsive Service)

- Door-to-door service
- Expensive (usually)
- Suitable for low demand densities

Integration of Conventional and Flexible Bus Services

Formulate Cost Functions for Bus Services

- Single Fleet Conventional Bus
- Single Fleet Flexible Bus
- Mixed Fleets Conventional Bus
- Mixed Fleets Flexible Bus
- Mixed Fleets Variable-Type Bus

Find Solutions

Bus Size(s), Route Spacing(s), Service Area(s), Headway(s), Fleet Size(s)...

Service Descriptions

Conventional Bus vs. Flexible Bus

Assumptions

- For both conventional and flexible bus
 - All service regions are rectangular
 - Terminal is connected to each region's nearest corner
 - Demand is fixed w.r.t. service quality and price
 - Bus size is optimized throughout system
 - Average waiting times are half the headways
 - Bus layover times are negligible
 - Average speed includes stopping times
 - External costs are assumed to be negligible

Assumptions (2)

For conventional bus

- Region k is divided into N parallel zones with width r (=W/N)
- Demand Q is uniformly distributed over service area
- Buses stop every d miles along the route

For flexible bus

- **\square** Region k is divided into N' equal zones, A=LW/N'
- Each zone should be "fairly compact and fairly convex"
- Buses operate on preset schedules
- Tour departure headways are equal for all zones in region and uniform within each period

For details, see references

SFC Cost Formulation

Service Cost = Operator Cost + User Cost

Operator cost = bus operating cost

User cost = in-vehicle cost + waiting cost + access cost

$$SC_c^{ki} = \frac{D^k W^k (a+bS_c)}{r^k V_c^i h_c^{ki}} + \frac{v_v L^k W^k Q^{ki} M^k}{V_c^i} + \frac{v_w L^k W^k Q^{ki} h_c^{ki}}{2} + \frac{v_x L^k W^k Q^{ki} (r^k+d)}{4V_x}$$

Optimal Headway and Fleet Size

$$h_{c opt}^{ki} = \min\left\{\frac{S_c l_c}{rL^k f Q^{ki}}, \sqrt{\frac{2D^k (a+bS_c)}{v_w L^k r^k Q^{ki} V_c^i}}\right\}$$
$$F_c^{ki} = \frac{D^k W^k}{r^k h_{c opt}^{ki} V_c^i}$$

Detailed SFC Cost Formulation

Fleet Size

$$F_{c} = \frac{DW}{rh_{c}V_{c}}, \text{where } D = 2J/y + W/z + 2L$$
Maximum Allowable Headway

$$h_{c} = \frac{S_{c}l_{c}}{rLfQ}$$
Operating Cost

$$C_{oc} = F_{c}B$$

$$B = a + bS_{c}$$

$$C_{oc} = \frac{D(a+bS_{c})LWfQ}{l_{c}V_{c}S_{c}} = \frac{DW(a+bS_{c})}{V_{c}rh_{c}}$$

Detailed SFC Cost Formulation (2)

In-vehicle Cost

 $\Box C_{vc} = v_v L W Q t$

Average travel time per passenger trip:

$$\Box t = \frac{J}{yV_c} + \frac{W}{2zV_c} + \frac{L}{2V_c} = \frac{M}{V_c} \text{, where } M = J/y + W/2z + L/2$$

In-vehicle Cost

$$\Box C_{vc} = v_v L W Q \frac{M}{V_c}$$

Detailed SFC Cost Formulation (3)

Waiting cost

Average waiting cost is assumed half the headway

$$\Box C_{wc} = v_w LWQ \frac{h_c}{2} = v_w LWQ \frac{S_c l_c}{2rLfQ} = \frac{v_w WS_c l_c}{2rf}$$

Access Cost

• Average access distance to the nearest route = r/4

Access distance alongside the route to the nearest bus stop = d/4

$$\Box C_{xc} = \frac{v_x LWQ(r+d)}{4V_x}$$

SFF Cost Formulation

Service Cost = Operator Cost + User Cost

- Operator cost = bus operating cost
- User cost = in-vehicle cost + waiting cost

$$SC_{f}^{ki} = \frac{L^{k}W^{k}(a+bS_{f})(D_{f}^{k}+\emptyset A^{k}\sqrt{\frac{Q^{ki}h_{f}^{ki}}{u}})}{A^{k}V_{f}^{i}h_{f}^{ki}} + \frac{v_{v}L^{k}W^{k}Q^{ki}(D_{f}^{k}+\emptyset A^{k}\sqrt{\frac{Q^{ki}h_{f}^{ki}}{u}})}{2V_{f}^{i}} + \frac{v_{w}L^{k}W^{k}Q^{ki}h_{f}^{ki}}{2}$$

Optimal Headway and Fleet Size

$$h_{f opt}^{ki} = min\left\{\frac{S_{f}l_{f}}{A^{k}Q^{ki}}, h_{f min}^{ki}\right\}$$

$$F_{f opt}^{ki} = \frac{L^{k}W^{k}(D_{f}^{k} + \emptyset A^{k}\sqrt{Q^{ki}h_{f opt}^{ki}/u})}{V_{s}A^{k}h_{f opt}^{ki}}$$

Detailed SFF Cost Formulation

Optimal Tour Distance (Stein, 1978; Daganzo, 1984)

$$D_c = \emptyset \sqrt{nA} = \emptyset A \sqrt{\frac{Qh}{u}} \text{, where } n = \frac{AQh}{u} \text{, } \emptyset = 1.15$$

Average round trip time

$$\square T = 2\left(\frac{L+W}{2zV} + \frac{J}{yV}\right) + \frac{D_c}{V} = \frac{D_f + \emptyset A \sqrt{\frac{Qh}{u}}}{V}, \text{ where } D_f = \frac{L+W}{z} + \frac{2J}{y}$$

Fleet Size

$$\square F = \frac{LWT}{Ah} = \frac{LW\left(D_f + \emptyset A \sqrt{\frac{Qh}{u}}\right)}{VAh}$$

Detailed SFF Cost Formulation (2)

Operating Cost

$$\Box C_o = FB = \frac{LW\left(D_f + \emptyset A \sqrt{\frac{Qh}{u}}\right)}{VAh} (a + bS)$$

In-vehicle Cost

$$C_{v} = \frac{vLWQT}{2} = \frac{vLWQ}{2} \left(\frac{D_{f} + \emptyset A \sqrt{\frac{Qh}{u}}}{V}\right) = \frac{vLWQ(D_{f} + \emptyset A \sqrt{\frac{Qh}{u}})}{2V}$$

$$Waiting Cost$$

$$C_{o} = vLWQ \frac{h}{2}$$

MFC Cost Formulation

Mixed Fleet Conventional Bus ?

Provide two sizes of conventional buses

Threshold Demand Matrix

Set large conventional bus service cost and small conventional bus service cost equal, then obtain:

$$Q_t^{ki} = \frac{v_w l^2 S_l S_s V_c^i}{2a D^k r^k L^k f^2}$$

If demand Q is larger then Q_t^{ki}: provide larger bus
 Otherwise, small bus

Number of Optimized Variables

Decision Variables

- k+1 up to 2k+2 variables
- Apply Integer Genetic Algorithm

The Hybrid (Two Stage) Solution Approach

Dependent Variables

Analytic optimization applied

Base Case Inputs

Den	nand (trips/mile ²	/hour)						
Region Period	A	В	С	D				
1	70	80	60	55				
2	30	35	40	40				
3	10	15	30	15				
4	5	7.5	10	5				
Time(hours)								
Region Period	A	В	С	D				
1	4	4	4	4				
2	6	6	6	6				
3	8	8	8	8				
4	6	6	6	6				
Region	A	В	С	D				
Line-haul Distance (miles)	4	5	3	5				
Length of Region (miles)	3	2	4	5				
Width of Region (miles)	4	5	3	3				

Base Case Results -SFC

		Vehicl	e Size		Route	Spacing for (Conventional	Bus	
		Single Fleet Co	onventional Bus		А	В	С	D	
		3	0		1.00	1.00	0.75	0.75	
	(Conventional Bus	Headway (hour	rs)	Conventional Bus Fleet Assignment (buses)				
Region Period	А	В	С	D	А	В	С	D	
1	0.141	0.154	0.153	0.144	18	20	17	24	
2	0.169	0.206	0.158	0.153	10	10	11	15	
3	0.338	0.294	0.173	0.255	5	7	10	9	
4	0.422	0.411	0.347	0.459	4	5	5	5	
		Conventional Bu	us Cost (\$/hour)		Operation Cost × Time				
Region Period	A	В	С	D	А	В	С	D	
1	3581.93	3645.33	2903.51	3775.33	14327.73	14581.33	11614.02	15101.33	
2	1533.20	1597.06	1757.02	2386.22	9199.20	9582.33	10542.11	14317.33	
3	692.67	861.45	1414.80	1154.11	5541.33	6891.62	11318.40	9232.89	
4	430.73	537.58	656.40	548.56	2584.40	3225.50	3938.40	3291.33	
Total Operati	on Cost (\$/da	y) = 145289.2	7, Total Capita	l Cost (\$/day)	= 9085, Total	Cost (\$/day)	= 154374.27	7	

Base Case Results -SFF

		Vehic	le Size		Sei	rvice Area fo	r Flexible Bu	S	
		Single Fleet	Flexible Bus		А	В	С	D	
		1	9		3.00	2.50	3.00	3.00	
		Flexible Bus H	Flexible Bus Fleet Assignment (buses)						
Region Period	А	В	С	D	А	В	С	D	
1	0.090	0.094	0.098	0.115	38	37	32	41	
2	0.139	0.156	0.119	0.129	16	15	18	25	
3	0.295	0.240	0.138	0.228	7	9	15	13	
4	0.379	0.421	0.266	0.459	5	5	7	6	
		Flexible Bus	Cost (\$/hour)		Operation Cost × Time				
Region Period	A	В	С	D	А	В	С	D	
1	3536.44	3449.17	2920.60	3889.67	14145.75	13796.68	11682.39	15558.68	
2	1343.78	1347.03	1592.10	2280.22	8062.695	8082.155	9552.63	13681.3	
3	603.98	721.93	1268.52	1080.88	4831.873	5775.41	10148.17	8647.04	
4	376.32	457.32	567.73	512.66	2257.946	2743.901	3406.406	3075.932	
Total Operatio	n Cost (\$/day	y) = 135448.9	6, Total Capital	Cost (\$/day) =	= 16206, Total	Cost (\$/day)	= 151654.9	6	

Base Case Results -MFC

			Vehicle	Size		Rou	te Spacing for	Conventional Bu	JS	
		Large C	onv. Bus	Small C	onv. Bus	А	В	С	D	
		4	0	2	7	1.00	1.00	0.75	1.00	
		Lai	rge Conventional B	us Headway (hour	s)	Small	Conventional B	us Headway (ho	urs)	
	Region Period	А	В	С	D	А	В	С	D	
	1	0.000	0.000	0.000	0.144	0.127	0.154	0.144	0.000	
	2	0.000	0.000	0.000	0.000	0.169	0.187	0.158	0.132	
	3	0.000	0.000	0.000	0.000	0.338	0.294	0.173	0.215	
	4	0.000	0.000	0.000	0.000	0.422	0.411	0.347	0.431	
		Large	Conventional Bus F	leet Assignment (buses)		Small Conventional Bus Fleet Assignment			(buses)	
	Region Period	А	В	С	D	А	В	С	D	
	1	0	0	0	18	20	20	18	0	
	2	0	0	0	0	10	11	11	13	
	3	0	0	0	0	5	7	10	8	
	4	0	0	0	0	4	5	5	4	
		Mixed F	leet Conventional I	Bus Service Cost (\$	ce Cost (\$/hour) Oper			ion Cost × Time		
	Region Period	А	В	С	D	А	В	С	D	
	1	3571.00	3633.33	2892.00	3842.83	14284.00	14533.33	11568.00	15371.33	
	2	1527.20	1587.21	1750.42	2412.23	9163.20	9523.28	10502.51	14473.41	
VERSI	3	689.67	857.25	1408.80	1126.99	5517.33	6858.02	11270.40	9015.93	
S'AP	4	428.33	534.58	653.40	519.74	2570.00	3207.50	3920.40	3118.43	
	Tota	I Operation Cost (${}$ (day) = 144897	.08, Total Capital	Cost (\$/day) = 8	743, Total Cost (\$	$\frac{1}{day} = 15364$	0.08		

Base Case Results - MFF

		Vehicle		Service Area for Flexible Bus					
	Large I	-lex. Bus	Small F	lex. Bus	А	В	С	D	
	2	22	1	7	3.00	2.50	3.00	3.00	
		Large Flexible Bus	Headway (hours)		Small Flexible Bus Headway (hours)				
Region Period	A	В	С	D	А	В	С	D	
1	0.097	0.105	0.000	0.000	0.000	0.000	0.094	0.101	
2	0.000	0.000	0.000	0.000	0.139	0.156	0.110	0.129	
3	0.000	0.000	0.000	0.000	0.295	0.240	0.138	0.228	
4	0.000	0.000	0.000	0.000	0.379	0.338	0.266	0.459	
	Lai	ge Flexible Bus Flee	et Assignment (bus	(buses) Small Flexible Bus Fl			eet Assignment (buses)		
Region Period	A	В	С	D	А	В	С	D	
1	36	34	0	0	0	0	33	45	
2	0	0	0	0	16	15	19	25	
3	0	0	0	0	7	9	15	13	
4	0	0	0	0	5	6	7	6	
	Mixe	ed Fleet Flexible Bu	s Service Cost (\$/I	nour)		Operation (Cost × Time		
Region Period	А	В	С	D	А	В	С	D	
1	3559.10	3466.35	2907.78	3889.18	14236.40	13865.41	11631.12	15556.72	
2	1337.38	1341.03	1582.63	2270.22	8024.29	8046.15	9495.77	13621.30	
3	601.18	718.33	1262.52	1075.68	4809.47	5746.61	10100.17	8605.44	
4	374.32	447.65	564.93	510.26	2245.95	2685.89	3389.61	3061.53	
Total	Operation Cost (\$/day) = 135121.8	84, Total Capital (Cost (\$/day) = 16	233 , Total Cost (\$/day) = 1513	54.84		

Base Case Results - MFV

		Vehic	le Size	Ro	ute Spacing	for Conv.	. Bus	Sei	vice Area f	Service Area for Flex. Bus		
		Large Conv. Bus	Small Flex. Bus	А	В	С	D	A	В	С	D	
		31	16	1.00	-	0.75	0.75	4.00	3.33	4.00	7.50	
		La	rge Conventional Bu	ıs Headway (ho	Headway (hours) Sma			mall Flexible Bu	all Flexible Bus Headway (hours)			
	Region Period	А	В	С	D		A	В	с		D	
	1	0.141	0.000	0.153	0.15	0	0.000	0.060	0.00	00	0.000	
	2	0.000	0.000	0.000	0.15	3	0.125	0.127	0.09	2	0.000	
	3	0.000	0.000	0.000	0.00	0	0.240	0.224	0.11	4	0.135	
	4	0.000	0.000	0.000	0.00	0	0.404	0.338	0.21	8	0.298	
		Large	Conventional Bus Fl	eet Assignment	(buses)		Smal	l Flexible Bus Fle	eet Assignm	ent (buse	s)	
	Region Period	А	В	С	D		А	В	С		D	
	1	18	0	17	23		0	45	0		0	
	2	0	0	0	15		15	15	19		0	
	3	0	0	0	0		7	8	15		12	
	4	0	0	0	0		4	5	7		5	
		/	Aixed Fleet Bus Serv	vice Cost (\$/hou	ır)			Operation	Cost imes Time	е		
	Region Period	А	В	С	D		A	В	С		D	
	1	3585.53	3576.37	2906.91	3774.	82	14342.13	14305.48	11627	7.62	15099.28	
VERSI	2	1330.98	1320.51	1593.94	2389.	22	7985.91	7923.05	9563	.62	14335.33	
S	3	573.37	690.51	1258.39	1034.	28	4586.97	5524.10	10067	7.11	8274.24	
	4	359.07	423.46	541.43	439.5	51	2154.44	2540.74	3248	.55	2637.04	
ARYL	Total	Operation Cost (\$/day) = 134215.0	52, Total Capito	al Cost (\$/de	xy) = 119	91 , Total Cos	t (\$/day) = 146	206.62			

Base Case Results Comparison

Total Cost (\$/day)

MFV cost savings compared to

156000

154000

152000

150000

148000

146000

144000

142000

SFC

How Reliable Are the Solutions?

Reliability of IGA

 17 of 20 runs find consistent solutions (0.3% difference)

Convergence of IGA to the MFV

Converge within 50 generations

Sensitivity Analysis - Results

	MFV	SFC	SFF	MFC	MFF
BASELINE	146206.6	154374.3	151655.0	153640.1	151354.8
MFV Savings		5.29%	3.59%	4.84%	3.40%
DEMAND* 10	970303.3	977175.0	1014112.7		1011816.9
MFV Savings		0.70%	4.32%		4.10%
Changes from BASELINE	563.65%	532.99%	568.70%		568.51%
J+5	180483.5	187482.2	189549.9	186763.2	189123.3
MFV Savings		3.73%	4.78%	3.36%	4.57%
Changes from BASELINE	23.44%	21.45%	24.99%	21.56%	24.95%
f=0.75 (was 1.0)	145617.9	152701.0	151655.0	151944.6	151354.8
MFV Savings		4.64%	3.98%	4.16%	3.79%
Changes from BASELINE	-0.40%	-1.08%	0.00%	-1.10%	0.00%
υ=1.0 (was 1.2)	149177.0	154374.3	156989.6	153640.1	156738.1
MFV Savings		3.37%	4.98%	2.90%	4.82%
Changes from BASELINE	2.03%	0.00%	3.52%	0.00%	3.56%
v=7 (was 5, 40% up)	164279.6	167704.6	173325.4	166970.4	172979.7
MFV Savings		2.04%	5.22%	1.61%	5.03%
Changes from BASELINE	12.36%	8.64%	14.29%	8.68%	14.29%
w=16.8 (was 12, 40% up)	156887.3	166984.0	161966.6	166226.8	161532.3
MFV Savings		6.05%	3.14%	5.62%	2.88%
Changes from BASELINE	7.31%	8.17%	6.80%	8.19%	6.72%
х=16.8 (was 12, 40% up)	150176.0	170069.8	151655.0	169213.4	151354.8
MFV Savings		11.70%	0.98%	11.25%	0.78%
Changes from BASELINE	2.71%	10.17%	0.00%	10.14%	0.00%

Sensitivity Analysis - Summary

SA(1): Demand \times 10

Total Cost (\$/day)

MFV cost savings compared to

Savings = (Mode-MFV)/MFV

SA(2) : J + 5

Total Cost (\$/day)

MFV cost savings compared to

Savings = (Mode-MFV)/MFV

SA(3): f=0.75

Total Cost (\$/day)

MFV cost savings compared to

Savings = (Mode-MFV)/MFV

SA(4) : u = 1.0

Total Cost (\$/day)

MFV cost savings compared to

Savings = (Mode-MFV)/MFV

SA(5) : v=7

Total Cost (\$/day)

MFV cost savings compared to

Savings = (Mode-MFV)/MFV

SA(6) : w=16.8

Total Cost (\$/day)

MFV cost savings compared to

Savings = (Mode-MFV)/MFV

SA(7) : x=16.8

Total Cost (\$/day)

MFV cost savings compared to

□ Savings = (Mode-MFV)/MFV

Contributions & Future Studies

Contributions

- Non-linear Mixed Integer Cost Functions are formulated and solved with a hybrid (IGA + Analytic Optimization) approach
- Mixed Fleet Variable Type Bus (MFV) is shown to have the least cost among five alternative bus operations
- Further Studies
 - Optimize bus stops with non-uniform demand
 - Coordinated passenger transfers at terminal

Questions ?

Contact Info

Edward Kim: <u>mkim27@gmail.com</u>, 301-405-3160
 Paul Schonfeld: <u>pschon@umd.edu</u>, 301-405-1954

Key References:

- Kim, M. and Schonfeld, P., Mixed Fleet Variable Type Bus Operation with Alternatives, under review
- Kim, M. and Schonfeld, P., 2012. Conventional, Flexible, and Variable-Type Bus Services, Journal of Transportation Engineering, Vol. 138, No. 3

APPENDIX- MFF Cost Formulation

⊨ Mixed Fleet Flexible Bus ?

- Provide two sizes of flexible bus services
- Threshold Demand Matrix
 - Set large flexible bus service cost and small flexible bus service cost equal, then obtain:

$$Q_{t}^{ki} = \frac{\frac{L^{k}W^{k}(a+bS_{l})\left(D_{f}^{k}+\emptyset\sqrt{\frac{S_{l}lA^{k}}{u}}\right) + \frac{v_{v}L^{k}W^{k}\left(D_{f}+\emptyset\sqrt{\frac{A^{k}S_{l}l}{u}}\right)}{2V_{f}^{i}} - \frac{L^{k}W^{k}(a+bS_{s})\left(D_{f}^{k}+\emptyset\sqrt{\frac{S_{s}lA^{k}}{u}}\right) - \frac{v_{v}L^{k}W^{k}\left(D_{f}+\emptyset\sqrt{\frac{A^{k}S_{s}l}{u}}\right)}{V_{f}^{i}lS_{s}} - \frac{v_{v}L^{k}W^{k}(S_{l}-S_{s})}{2V_{f}^{i}}}$$

If demand Q is larger then Q_t^{ki}: provide larger bus
 Otherwise, small bus

APPENDIX- MFV Cost Formulation

A Mixed Fleet Variable-Type Bus ?

- Provide Large conventional bus for high demands
- Provide small flexible bus for low demands
- Threshold Demand Matrix
 - Set large conventional bus service cost and small flexible bus service cost equal, then obtain:

$$Q_t^{ki} = \frac{\frac{v_w \left\{\frac{S_f l_f}{A^k} - \frac{S_c l_c}{r^k f L^k}\right\}}{\left\{\frac{D^k f(a+bS_c)}{V_c^i S_c l_c} - \frac{(a+bS_f)(D_f + \emptyset \sqrt{A^k S_f l_f / u})}{V_f^i S_f l_f} + \frac{v_v M^k}{V_c^i} - \frac{v_v (D_f + \emptyset \sqrt{A^k S_f l_f / u})}{2V_f^i} + \frac{v_x (r^k + d)}{4V_x}\right\}}$$

- If demand Q is larger then Q_t^{ki} : provide larger bus
- Small bus, otherwise

APPENDIX- Capital Cost Formulation

$$\Box$$

Fleet Size Matrix =
$$\begin{bmatrix} F_c^{11} & \cdots & F_c^{k1} \\ \vdots & \ddots & \vdots \\ F_c^{1i} & \cdots & F_c^{ki} \end{bmatrix} \rightarrow \begin{bmatrix} \sum_{i=1} F_c^{ki} \\ \vdots \\ \sum_{i=i} F_c^{ki} \end{bmatrix}$$

Required Total Fleet Size (vehicles/day)
 = max{∑_{i=1} F_c^{ki}, ..., ∑_{i=i} F_c^{ki}}
 Capital Cost = (a_c + b_cS_c) × Total Fleet Size
 Apply also for flexible bus

General Thoughts on Intermodal Passenger Transportation

General Thoughts on Intermodal Passenger Transportation

- Transportation modes vary greatly in their characteristics and suitability for particular applications
- The modes with high speed and capacity should usually rely on modes with lower speed and lower infrastructure requirements for local collection & distribution of passengers. That requires transfers.

Advantages of Transportation System with Intermodal Transfers

- No need for direct routes among all origin destination pairs
- Concentrate passengers on major routes with faster and/or lower cost modes
- Improve utilization of infrastructure
- Reduce negative impact, e.g. congestion, energy use, emissions and accidents

Transfer coordination <u>may</u> be desirable for <u>some</u> vehicle pairs at transfer terminals, depending on route characteristics, expected wait times at transfer terminals and elsewhere, variability of travel times, slack times needed in schedules, information on vehicle locations vehicle arrival times, connecting passengers and passengers waiting downstream, and effects induced elsewhere in the system.

Main Components of Optimization Methods for Integrated Intermodal Systems

- Network design, including location of transfer terminals
- Schedule optimization, with optimized slack times
- Real-time dispatching decisions for ready vehicles, considering delay propagation through networks

Multi-Hub Intermodal Network

AIVERSIT

Real-Time Dispatching

- The optimized holding time (T31) is 22.21 (min), which indicates that the ready vehicle should wait until the 6th late vehicle (from Route 1) arrives.
- The optimized holding time (T33) is 26.874 (min), which means that the ready vehicle should wait until the 7th late vehicle (from Route 6) arrives.

Transfer Coordination in Logistic Networks

Frank Chen and Paul Schonfeld

Dept. of Civil Engineering March 28, 2011 Modeling and Performance Assessment of Intermodal Freight Transportation Timed Transfer Systems

Motivation

	Shipment Ch	aracteristics by Mode	e in Ton-miles
Mode of Transportation	2002 (million)	2007 (million)	Percentage Change
Single Modes	2,867,938	2,894,251	0.9
Truck	1,255,908	1,342,104	6.9
Rail	1,261,612	1,344,040	6.5
Water	282,659	157,314	-44.3
Air	5,835	4,510	-22.7
Multiple Modes	225,715	416,642	84.6

 Data Source: 2007 Commodity Flow Survey, U.S. DOT, RITA, BTS Special Report

Motivation

- Advantages of an intermodal timed transfer system
 - Eliminating direct routes connecting all origin-destinations pairs and concentrating cargos on major routes with faster (e.g. airplanes) or lower cost (e.g. container ships) modes
 - Improving the utilization of existing transportation infrastructure
 - Reducing the requirements for warehouses and storage areas due to poor connections
 - Reducing other impacts, including traffic congestion, fuel consumption, emissions, and accidents

Solution Approaches

• GA, SQP, and Hybrid GA – SQP Algorithm

Algorithms	Advantages	Disadvantages
GA	 (1) Global search pattern (2) No need to calculate Gradient and Hessian (3) Suitable for large-scale problems with many local optima 	 (1) Converge slowly during the final gen. (2) Generate many infeasible solutions (3) Longer program running time (4) Different random seeds may lead to different final solutions
SQP	(1) Provide quick and robust solutions	(1) Easily trapped in local optima(2) Sensitive to different initial estimates(3) Unsuitable for large-scale problems
GA - SQP	 (1) Global search pattern (GA) with faster local convergence (SQP) (2) Generate robust solutions (3) Suitable for large-scale problems with many local optima 	(1) Longer program running time than pure SQP 57

Model Applications

Optimized results for different policies in case 1

Slack	Coordinated	Coordinated	Costs (\$ / hr)	Uncoord	Coord/GA	Coord/GA-SQP
Time	(GA)	(GA-SQP)	Operating Cost	10382	12496	12485
\mathbf{S}_1^{-1}	0.0326	0.0170	Dwell Cost	5216	4444	4447
S_2^{1}	0.0756	0.0557		10	0	0
			Loading / Unioading	10	9	9
S_{3}^{1}	0.0321	0.0300	Cargo Processing	9	7	7
S_4^1	0.1064	0.0170				
4			Non-transfer Cost	15617	16956	16948
S_5^{1}	0.0209	0.0229	Inter-cycle		0	0
\mathbf{S}_{ℓ}^{1}	0.0217	0.0466				
0			Slack time		661	509
S_{7}^{1}	0.0203	0.0175	Miss-connection		1724	1958
C 1	0.0702	0.0246			1/21	1700
38-	0.0793	0.0240	Connection delay		442	328
S_{a}^{1}	0.0535	0.0558				
Sy	010000		Transfer Cost	5216	2827	2795
S_{10}^{1}	0.0500	0.0500	Total System Cost	20833	19783	19743

Dispatching Problem Statement

- A real-time dispatching control model is developed to alleviate schedule disruptions.
- Disruptions may sometimes affect the system operations, and the previous optimal plan may become non-optimal or even infeasible.
- When disruptions occur, we mainly consider how to adjust or re-optimize the original plan to adapt the changing environment and how to get back on track soon while effectively using our available resources.
- The control model determines through an optimization process which ready outbound vehicles should wait for which late inbound ones.

211204114										
Inbound Route	Route Travel Time (min)		(To) Outbound Truck Route 31 (Unit: lb / hr)		(To) Outbound Rail Route 33 (Unit: lb / hr)		Delay Information (min)			
(From)	Mean	Std. Dev.	m = 1	m = 2	m = 1	m = 2	Mean	Std. Dev.		
1	97	8.6	503	1081	1311	2817	23	0.4		
2	60	5.3	551	1185	1937	4166	12	0.3		
3	68	7.4	302	649	1674	3598	18	0.35		
4	104	10.5	189	406	1752	3767				
5	53	5.5	303	652	1714	3688	10	0.25		
6	93	8.8	243	523	1395	3000	27.5	0.45		
7	85	9.1	382	821	2145	4612				
8	64	7.2	520	1118	1688	3630	15.5	0.3		
9	83	7.7	378	812	1356	2915				
10	41	4.5	366	786	1696	3647	7.5	0.25		
11	32	3.6	524	1127	2221	4775				
12	56	4.8	381	820	2036	4378				
13	99	10.1	380	817	1289	2772	35	0.5 61		

Inbound route delay information in Case 2

 The optimized holding time (T₃₁) is 22.21 (min), which indicates that the ready vehicle should wait until the 6_{th} late vehicle (from Route 1) arrives.

 The optimized holding time (T₃₃) is 26.874 (min), which means that the ready vehicle should wait until the 7_{th} late vehicle (from Route 6) arrives.

0.05

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 Holding Time (hr) 62

Model Development

- Optimized problem for distributing missed-connection cargos at transfer terminals
 - Applies to cargos left over due to missed connections caused either by the no-holding decisions or arrivals after the ready vehicles have been dispatched
 - The mathematical model describing the re-distributing plan is formulated based on the well-known location choice problem (Revelle and Laporte, 1996).

$$\begin{aligned} Min \quad \omega &= \sum_{m \in M} \sum_{\substack{k,l \in N \\ k \neq l}} \sum_{p \in n_p} c_{kl}^{mp} \pi^p \alpha_{kl}^{mp} \beta^p \\ &+ \sum_{p \in n_p} \lambda^p \beta^p \end{aligned}$$

- Assume some candidate pickup vehicles including one rail train (p = 1) and three container trucks (p = 2~4) can move those cargos from terminal 1 to terminals 2 and 3.
- In general, most cargos are re-assigned to candidate vehicles based on their shortest path (e.g. terminal 1 - 3 or terminal 1 - 2).
- Certain cargos with higher time value (m = 1) are reassigned to farther path (i.e. terminal 1 - 3 - 2) so as to minimize total shipping time (i.e. longer travel time but much shorter dwell time.)

Missed-Transfer Cargos Left at Terminal 1								
(From)	(To) Ter (Uni	rminal 2 t: lb)	(To) Terminal 3 (Unit: lb)					
Terminal 1	m = 1	m = 2	m = 1	m = 2				
6			494	1,063				
13	2,621 5,636		773	1,661				
Candidate Delivery Vehicles for Re-Distribution								
Vehicle ID	p = 1	p = 1 p = 2		$\mathbf{p} = 4$				
Space (lb)	50,000 2,250		2,400	2,000				
0	ptimized R	e-Distributi	ion Results					
(From)	(To) Ter (Uni	rminal 2 t: lb)	(To) Terminal 3 (Unit: lb)					
Terminal 1	m = 1	m = 2	m = 1	m = 2				
p = 1		5,636						
p = 2	983		1,267					
p = 3	1,638			762				
p = 4				1,982				

Future Research Plan

- Analyze and test a contra-flow network reconfiguration and resilience approach in the simulated environment during the phases of post-disaster response, recovery, and management.
- Develop mitigation plans of traffic delays arising during the nonrecurring congestion in time-dependent, stochastic and dynamic environments.
- Improve the above GIS-based applications for emergency disaster logistics management plans.
- Simulate and optimize various intermodal logistics problems with real-world applications.