

Renewable Electricity Conference Calgary, Alberta May 28, 2015

David Rapson Economics Department University of California, Davis

Renewables and demand response

Outline

- Review intermittency challenges from renewables
- Potential role of demand response programs
- Evidence
 - Prices
 - "Behavioural" interventions
 - Automation
- Implications
- Areas in need of research

Challenges: expected intermittency

Rapson, UC Davis

3

Challenges: unexpected intermittency

Figure 2.12: PV Plant output on a partly-cloudy day (Sampling time 10 seconds)

Source: NERC 2009

Rapson, UC Davis

Challenges: nodal scarcity

Midwest ISO real-time LMP, 9/7/2011, 9:25 a.m.

May 27, 2015 day-ahead prices in CA

Source: CAISO

Electricity Demand Response

Challenges

Implications: 3 possible solutions

- Adjust "local" supply
 - Day-ahead (predictable)
 - Regulation and spinning reserves (unexpected)
 - Storage?
- Import from adjacent markets
 - Subject to transmission constraints and timeliness of resource availability
- Curtail demand
 - Demand response initiatives
 - This is the focus of my talk

Options for demand response

Three main types of interventions

- Time-varying prices
- "Behavioral" interventions
 - E.g. moral suasion
- Automation
 - Curtailment contracts
 - Voluntarily response to high prices
- What has been tested?
- What have we learned?

Warning: almost everything we know relates to residential consumers

Main source

Jessoe, Rapson & Smith (forthcoming), "Utilization and Customer Behavior: Smart Choices for the Smart Grid", International Handbook of Smart Grid Development

Electricity Demand Response

An aside on methodologies

Many methods allow us to retrieve credible estimates DR intervention effects

- Randomized controlled trial
 - Recruit sample
 - Randomize into control and treatment groups
- Randomized encouragement design
 - When it is infeasible or undesirable to exclude from participation
 - Randomly encourage a subset of the population to participate
 - Compare encouraged and non-encouraged to retrieve treatment effect
- Regression discontinuity design
 - Many interventions are triggered by crossing a threshold

Goals: transparency, credibility, fairness.

Time-varying prices

Several flavours, which differ in timeliness and granularity

- Time-of-use pricing (TOU)
 - Peak and off-peak periods and prices set months in advance
 - E.g. \$0.20/kWh from noon-8pm on weekdays; \$0.10/kWh all other hours
 - Captures at most 6-13% of variability in wholesale market prices
- Critical-peak pricing (CPP)
 - Steep price increases for a small number of hours
 - Finite number of CPP "events" each season
 - Customers notified shortly before the event
- Real-time pricing (RTP)
 - Prices vary with high frequency to reflect wholesale market fluctuations

Very for are on TVP (mostly TOU)

Electricity Demand Response

Time-varying prices

Evidence

- In general, consumers respond to prices
 - 10% increase in flat-rate prices leads to ~1% decrease in energy use
- TOU produces mixed results (small to insignificant effects)
 - Peak/off-peak gradient matters
 - Likely undermined by weak incentives and inattention
- CPP is much more effective
 - Several studies find large demand reductions during CPP events
 - Effects much larger (2-3x) when accompanied by information displays
- RTP: much less evidence
 - One study shows conservation response to high prices, with no load shifting

Time-varying prices

Example: randomized experiment in CT (Jessoe & Rapson 2014)

- CPP price: \$0.70/kWh
- Treatment effects on treated
 - 7% price-only
 - 22% price+IHD
- Advance notice matters
 - Little response when given 30-min notice

Behavioural interventions

Interventions

- Moral suasion
 - Appeal to pro-social instincts when requesting conservation during peak hours

Common, but generally deployed for overall energy conservation (not targeted DR)

- Social norms
 - Compare customer's usage to neighbours' usage
- Goal setting
- Games/competitions
- etc.

Rapson, UC Davis

Moral suasion

Evidence (Ito, Ida and Tanaka WP)

- Setting; Kyoto prefecture 2012-13
- Moral suasion "works", but much less than a large economic incentive
- Effects dissipate with repetition

Rational inattention?

Evidence from Jessoe, Rapson & Smith, 2014

- Households forced onto TOU tariff if monthly usage exceeds a threshold (red)
- TOU rates *lower* than flat rates during *both* peak and off-peak hours during initial rollout
- In response, households
 lowered their electricity use!
- What can explain that?
 - Inattention
 - Intermittent updating
 - Other?

Automation

Two flavours

- "Smart" appliances pre-programmed to respond to prices
 - E.g. Thermostat temperature set point increases by I-degree C when price rises above \$0.30/kWh
- Electric utility enters into a contract allowing it to curtail load
 - Similar technology (smart appliances), but utility discretion
 - E.g. ENERNOC

Automation

Evidence I: Hartman & Bollinger WP

- TOU and CPP prices
 - I think this figure averages across them
- PCT cuts load to AC based on price and temperature
- Sharp effects from automation
- Can influence sharpness by staggering timing of device response (if desired)

Electricity Demand Response

Automation

Evidence I: Jessoe, Miller & Rapson WP

- CPP prices
- PCT adjusts temperature set point up 3 degrees F during price events
- Sharp effects from automation

Rapson, UC Davis

Summary

What have we learned about consumers?

- Responsive to price
 - Much more responsive to price when informed about usage
- Consumers are poorly informed
- (Rationally) inattentive, potentially intermittent updaters
- Susceptible to behavioural nudges
 - But these dissipate over time
 - These are difficult (but not impossible) to target to certain times

Implications

Demand response take-aways

- Prices and automation well-suited for addressing expected intermittency/ ramps
 - Requires smart meter and/or smart appliances/devices
- Unexpected intermittency/ramps less amenable to price-only solutions
 - Inattention
 - Coarseness of response
- Automation has clear benefits
 - Overcomes information and attention deficits
 - Social benefits \neq private benefits
 - Requires investment in smart infrastructure

Research priorities

Where should we focus future research efforts?

- Commercial and industrial sectors
 - Do firms behave as "rational" agents?
- Long-run response to prices/automation
- Effect of compound interventions
 - How do intrinsic and extrinsic triggers interact?
- "Supply curve" of DR and substitutes
 - Private vs social costs of intervention
 - How do they compare to alternatives (e.g. storage)?
- What is the best way to roll out DR programs to the masses?
 - Choice-neutral defaults?
 - Voluntary? Mandatory? Incentive-based?

Rapson, UC Davis

Thank you

David Rapson Economics, UC Davis <u>dsrapson@ucdavis.edu</u> <u>http://www.econ.ucdavis.edu/faculty/dsrapson/</u> twitter: @rapsonenergy

Electricity Demand Response