Obstacles and Challenges to Integrating Renewable Energy in Electricity Grids

G Cornelis van Kooten

Professor of Economics & Canada Research Chair University of Victoria

> Climate Change, Climate Science and Economics: Prospects for an Alternative Energy Future (Springer 2013)

Alberta-BC Power Grid

- Promise: Alberta and BC cooperation in the electricity sector could greatly reduce CO₂ emissions
 - Large rents from trade Alberta's excess generation at night from wind and coal plants could be stored behind BC dams
 - BC buys Alberta power for pennies per kWh at night and sells it back at \$s per kWh during peaks
 - Alberta has prevented further upgrades of intertie
- Problem: Alberta's electricity operations are open to the public; those of BC are a mystery

Things we have been studying:

- 1. Can electricity trade between Alberta and BC make wind energy more attractive?
 - Wind is intermittent → Gas and/or diesel plants are needed to compensate for intermittency.
 - Trade allows Alberta to use BC's hydro reservoirs and operation of dams to store excess wind generation.
- 2. How do varying levels of carbon taxes change Alberta's optimal generation mix?
- 3. Is nuclear power an attractive alternative energy source?

Additional Background

Alberta's Electricity System

- Deregulated market, transactions coordinated by AESO
- -Trade based on price differentials: primarily reacts to the Mid-Columbia Electricity Price Index (MidC)
- Marginal fuel type: Coal, natural gas

BC's Electricity System

- Regulated market
- Dominated by hydroelectricity (~92-96%)

Saskatchewan's Electricity System

- Regulated market
- Dominated by coal and gas, some hydro & wind

MidC

- Marginal fuel type: hydro

Interties

• BC-Alberta intertie is rated at 1,000 MW into BC (but operates at only 650 MW) and rated at 1,200 MW into Alberta (but tends to operate below 750 MW)

– We assume 750 MW and 1500 MW (both directions)

- BC has an intertie with the U.S. rated at 3,150 MW capacity (2,850 MW west side, 300 MW east side), while the import capability is 2,000 MW
- Alberta has an intertie with the U.S. rated at 300 MW in both directions, and an intertie with Saskatchewan rated in both directions at 153 MW

Comparison of generating mixes, 2015

ALBERTA

British Columbia

	Maximum		Maximum
	capacity		capacity
Generation type	(MW)	Generation type	(MW)
Coal	6,271	Coal	-
Closed-cycle gas	1,716	Gas	1,464
Simple-cycle gas	944	Hydro	13,649
Cogeneration gas	4,483	Wind	248
Hydro	894	Biomass & waste	
Wind	1,434	heat	369
Biomass & other	409	TOTAL	15,730
ΤΟΤΔΙ	16 151	http://en.wikipedia.org/wiki/List_of_generating	stations_in_British_Columbia

[accessed January 12, 2015]

AB: 0 wind on January 6, 14:23, but http://ets.aeso.ca/ets_web/ip/Market/Reports/CSDReportServlet 646 MW (45%) on January 12, 16:34

[accessed January 6, 2015]

Alberta Load and Wind Generation at 10-minute Intervals, First and last 10 Days in 2014 (Wind below 100MW Jan 1, 3, 5, 7; Capacity factors = 33.5% and 38.1%)

Load duration curve for Alberta, 2014 (Min = 4461 MW; Max = 11,192 MW)

Base Scenario

Tax Scenario

Feed-in Tariff

Co-firing Wood Pellets in Alberta Coal Plants

- BC has 1,875 Mt of wood pellet production capacity (2012), 65% of Canadian total selling mainly into Europe (840 Mt to UK; 240 Mt to NL)
- 2011 amendment to Canadian Environmental Protection Act (1999) lowered emissions intensity for new or refurbished thermal power plants to 375tCO₂/GWh, later raised to 420tCO₂/GWh (U.S. standard 500 tCO₂/GWh)
- Johnston & van Kooten (*Energy Economics* 2015) examined the costs

Wood pellet prices (C\$ per tonne), Weekly 2012

Installed coal-fired capacity in Alberta, 2012

Station		Capacity	Completed	CO_2	NOx	SO_2
Unit		(MW)	(Year)	(t/GWh)	(t/GWh)	(t/GWh)
Battle I	River					
	3	150	1969	931	1.9	5.5
	4	150	1975	882	1.8	5.4
	5	389	1981	1,176	2.4	5.0
Genese	e					
	1	410	1989	980	2.0	2.0
	2	410	1994	980	2.0	2.0
	3	495	2005	676	0.7	0.9
HR Mi	lner					
	1	158	1972	1,103	2.3	3.0
Keephi	lls					
	1	396	1983	1,103	2.3	2.1
	2	396	1983	1,127	2.3	2.1
	3	495	2011	676	0.7	0.6
Sheerne	ess					
	1	390	1986	1,127	2.3	6.4
	2	390	1990	1,127	2.3	6.4
Sundan	ice					
	3	408	1976	980	2.0	1.8
	4	386	1977	931	1.9	1.8
	5	386	1978	833	1.7	2.0
	6	386	1980	784	1.6	2.0

Total Emissions and Abatement Costs under 5% and 15% Co-fire Scenarios

Sc	Scenario 5% Co-fire		∕₀ Co-fire		15% Co-fire		
	Policy	Emissions (Mt CO ₂)	Average abate- ment cost (\$/tCO ₂)		Emissions (Mt CO ₂)	Average abate- ment cost (\$/tCO ₂)	
			Carbon tax (\$/t	CO) ₂)		
	\$0	56.5	n.a.		56.5	n.a.	
	\$50	45.6	262.18		42.6	253.06	
	\$100	32.2	323.30		33.5	318.08	
	\$150	29.9	348.41		29.9	348.41	
	\$200	29.9	410.99		29.9	410.99	
	Feed-in tariff (\$/MWh)						
	\$0	56.5	n.a.		56.5	n.a.	
	\$30	56.5	n.a.		56.4	240.33	
	\$60	56.5	n.a.		49.8	287.48	
	\$90	54.3	715.74		49.8	321.48	
	\$120	54.3	749.39		49.8	355.37	

Market Merit Order (variable wind)

The Reserve Market

- Reserves consist of
 - Regulating reserves: deal with short-term (seconds up to 10 minute) fluctuations in load are met
 - Base-load plants have a little bit of wiggle room
 - Gas/diesel generators operating at part capacity
 - Standby reserves (spinning reserves)
 - Load following reserves deal with anticipated changes in load over an hour
 - Contingent reserves: Western Electrical Coordinating Council (WECC) rules require sufficient reserves to meet failure of largest unit on line plus some % of thermal generation
- Generators bid into the reserve market

Reserve Market

Megawatts (MW)

Market for Regulating and Contingent Reserves

Megawatts (MW)

Managing Wind Resources

- Difficult to integrate wind into electricity grids
 - Wind is variable and intermittent
 - Too little or too much wind \rightarrow output drops suddenly to zero.
- Capacity Factor:

CF = Actual generation in one year / (Rated Capacity × 8760 hrs)

- Capacity factors for wind rarely exceed 20-25%
- CFs for nuclear power = 95%
- CFs for coal and CCGT = 85-90%
- Wind penetration = Wind capacity / Non-wind capacity Alternative definition:

Wind penetration = Wind generation capacity / Peak load

BPA Balancing Authority Load & Total Wind, Hydro, and Thermal Generation, Last 7 days 20May2015 - 27May2015 (last updated 26May2015 11:27:18)

Balancing Authority Load in Red, Wind Gen. in Green, Hydro Gen. in Blue, and Thermal Gen. in Brown Click chart for installed capacity info BPA Technical Operations (TOT-OpInfo@bpa.gov)

Source: http://transmission.bpa.gov/business/operations/Wind/baltwg.aspx

Model

AESO maximizes profit subject to load, trade, economic and engineering constraints:

$$\Pi = \sum_{t=1}^{T} \begin{bmatrix} P_{A,t}D_t - \sum_i (OM_i + b_i + \tau\varphi_i)Q_{i,t} + \sum_i (P_{A,t} - P_{k,t} - P_{k,t} - \delta_k)M_t + (P_{k,t} - P_{A,t} - \delta_k)X_t \end{bmatrix} - \sum_i (a_i - d_i)\Delta C_i$$

P = price, D = demand or load, OM = operating costs, b = fuel costs, $<math>\tau = \text{carbon tax}, \varphi = \text{conversion factor (fuel into CO}_2) \text{ on per MWh basis},$ <math>Q = power production (MWh),M = imports, X = exports,a = per unit cost of adding capacity (\$/MW),d = per unit cost of decommissioning capacity (\$/MW),

C =capacity (MW)

Demand is met every hour:

$$\sum_{i} Q_{t,i} + \sum_{k \in [BC,SK,MID]} (M_{k,t} - X_{k,t}) \ge D_t, \forall t = 1,...,T$$

Ramping-up constraint:

$$Q_{t,i} - Q_{(t-1),i} \le \frac{C_i}{R_i}, \forall i, t = 2,...,T$$

Ramping-down constraint:

$$Q_{t,i} - Q_{(t-1),i} \ge -\frac{C_i}{R_i}, \forall i, t = 2,...,T$$

Capacity constraints:

$$Q_{t,j} \leq C_i, \forall k, t$$

Import transmission constraint:

 $M_{k,t} \leq TRM_k, \forall k, t$

Export transmission constraint:

Non-negativity:

 $M_{k,t} \leq TRK_k, \forall k, t$

 $Q_{t,i}, M_{k,t}, X_{k,t} \ge 0, \forall t, i, k$

Background Data

				Varia	able		
		Constr	uction Costs	Co	sts		
		(\$	\$/kWh)	(\$/M	Wh)		Ramp
	Years		Decommission				rate % of
	to		as % of			Emissions	capacity
Asset	build	Overnight	overnight	0&M	Fuel	(tCO ₂ /MWh)	per hour ^c
Nuclear	7	5000.0	42.8	3.1	14.0	0.020	0.010
Biomass	2	1280.0	22.2	6.6	92.7	0.250	0.025
Coal	4	1777.0	24.0	6.6	15.6	0.850	0.025
Wind	3	1300.0	n.a.	0.2	0.0	0.015	n.a.
Hydro	4	2100.0	n.a.	10.0	1.01	0.009	n.a.
CCGT	3	965.4	10.0	4.9	43.5	0.450	0.075
OCGT	2	694.8	10.0	14.7	48.2	0.450	0.125

Source: Various including The Economist, Conrad Fox, AESO, etc.

Load and Price Data, 2014

	Alberta	Saskatchewan	British Columbia	Mid- Columbia		
		Loa	d (MW)			
Average	9,128	_	7,061	21,940		
Maximum	11,192	3,379(2013)	10,672	30,246		
Minimum	4,461	_	4,817	13,453		
	Generation (GWh)					
	79,962	22,129(2012)	61,850	192,195		
	Energy Price (\$/MWh)					
Average	49.41	55	50	38.82		
Maximum	999.99	_		216.32		
Minimum	7.88	-		14.30		

Alberta's system ramps at 600 MW per hour; BC 200 MW per minute!

AB-BC Intertie Capacity = 750 MW (no nuclear; wind maximized)

AB-BC Intertie Capacity = 1500 MW (no nuclear; wind maximized)

Notice higher use is made of the intertie to store base load generation at low carbon prices

AB-BC Intertie Capacity = 750 MW (nuclear)

AB-BC Intertie Capacity = 1500 MW (nuclear)

Annual Emissions (Mt CO₂)

Price of	No nuclear Intertie capacity			Nuclear Intertie capacity		
carbon	750 MW	1500 MW	-	750 MW	1500 MW	
\$0	66.74	73.00		66.74	73.00	
\$50	47.09	50.86		47.09	50.86	
\$100	24.32	20.91		4.88	4.78	
\$150	24.17	20.74		2.06	1.90	

Wind and switching to natural gas can reduce emissions by two-thirds or more; nuclear power along with storage can reduce emissions by upwards of more than 95%

Movement along the Interties: Net Alberta Exports (GWh)

Price of	No Intert	nuclear ie capacity	Nu Intertie	Nuclear Intertie capacity	
carbon	750 MW	1500 MW	750 MW	1500 MW	
\$0	10,177	16,747	10,177	16,747	
\$50	4,910	11,448	4,910	11,448	
\$100	-8,948	-14,810	-5,409	-7,619	
\$150	-9,270	-15,189	-3,048	-4,698	

Nuclear power comes into the optimal grid when price of carbon is $100/tCO_2$ or more; less power is imported with a higher capacity intertie as more nuclear and wind power is exported.

Optimal Capacity by Generator Type (MW)

Nuclear	Coal	CCGT	OCGT	Wind
0	6550	3800	1500	805
Alberta	and BC			
0	4536	3800	1500	805
0	0	7550	2290	805
0	0	8020	1820	805
0	0	7980	1855	6365
0	0	8075	1765	11,380
5945	0	3800	90	805
6910	0	3015	0	805
along 13	BOOMW-c	apacity ir	ntertie	
0	4100	3800	1500	805
0	0	7565	1500	805
0	0	7970	265	805
0	0	6370	1865	9940
0	0	6630	1605	11,500
2810	0	3800	1630	805
6330	0	1965	0	805
	Nuclear 0 <i>Alberta</i> 0 0 0 0 0 5945 6910 <i>along</i> 13 0 0 0 0 0 0 2810 6330	NuclearCoal0 6550 Alberta and BC0 4536 00000000005945069100along 1300MW-c00<	NuclearCoalCCGT065503800Alberta and BC045363800007550000802000079800008075594505945038003015along 1300MW-capacity in0756500797000063700003800003800003800006330633001965	NuclearCoalCCGTOCGT0655038001500Alberta and BC0453638001500045363800150000075502290008020182000798018550080751765594503800906910030150along 1300MW-capacity intertie0410000756515000079702650063701865003800160528100380016306330019650

Source: van Kooten et al., 2013. Am J of Agric Economics 95(2)

Country	Projects	\mathbf{MW}
China	1,522	84,232
India	830	14,517
Mexico	30	4,276
Brazil	68	5,519
Chile	19	1,653
Uruguay	15	707
South Africa	16	2,451
South Korea	13	377
Argentina	11	665
Morocco	7	603
Dominican Republic	6	230
Pakistan	8	405
Costa Rica	6	197
Cyprus	6	268
Philippines	5	321
Panama	5	674
Kenya	5	527
Vietnam	5	188
Sri Lanka	5	51
Thailand	3	267
22 other countries	43	2,363
TOTAL	2,628	120,751

CDM wind projects, May 1, 2015

Conclusions

- At low carbon prices, gas replaces coal
- Existence of an AB-BC intertie implies Alberta will try to export more base load at low carbon prices and import more hydroelectricity as price of carbon increases
- As the carbon price rises, large investments in wind are incentivized because of available wind sites with high capacity factors
 - Location of population, transmission, etc. imply it is not always optimal to choose on basis of highest CFs (McWilliam et al., 2012. *Renewable Energy* 48)
- Intertie capacity to BC facilitates intermittent wind because of storage capacity in BC hydro reservoirs

Conclusions (cont)

- Increased intertie capacity also facilities larger, cheaper base-load thermal plants that take advantage of BC storage to keep output above base load.
- Nuclear energy reduces need for wind
 - Nuclear takes advantage of storage in BC so capacity can exceed base load requirements depending on intertie capacity
 - With nuclear generation, emissions can be reduced by 95% or more; not possible with intermittent wind since reserves are needed when wind goes 'missing' for long periods
 - Canadian target of 30% reduction in CO₂ emissions from 2005 base by 2030 will require some wind but primarily nuclear energy, or alternatively carbon capture and storage (CCS)
 - Scott, D.S., 2007. *Smelling Land. The Hydrogen Defense against Climate Catastrophe*. Can Hydrogen Assoc & Natural Resources Canada.
 - Long, J.C.S. and J. Greenblatt, 2012. Issues in Science & Tech. Spring