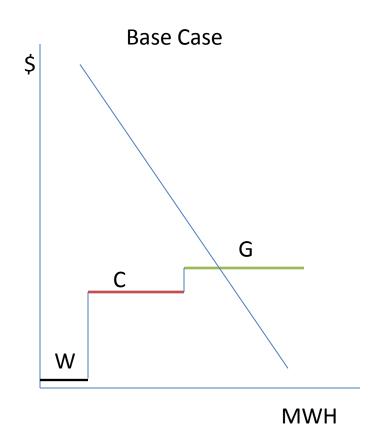
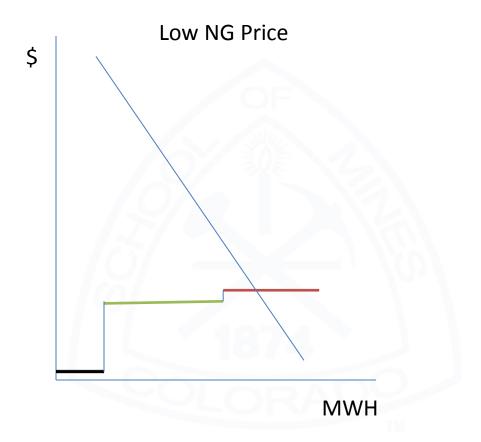


A ONE-TWO PUNCH: JOINT EFFECTS OF NATURAL GAS ABUNDANCE & RENEWABLES ON COAL-FIRED POWER PLANTS

Harrison Fell (CSM) and Daniel Kaffine (CU-Boulder)

Generation and Emissions


Research Questions

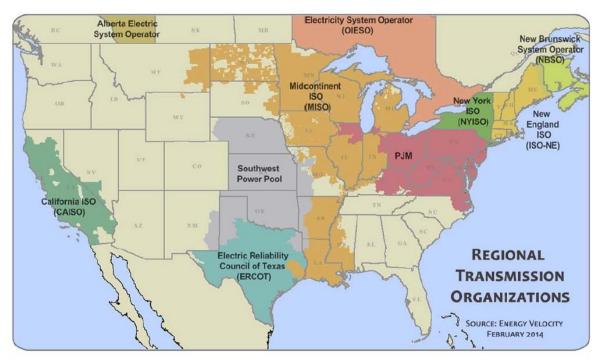

- How sensitive is coal-fired generation to natural gas prices and wind-generation?
- Are wind and gas compliments or substitutes for coal displacement?
 - Complementarity possible for several reasons
- Are there important energy policy interactions to consider?
 - For example, would increased wind generation exacerbate or relegate the impact of carbon pricing on coal generation?

Related Literature

- Generation and emissions response to prices
 - Holland and Mansur (2008), Lu et al. (2012), Cullen and Mansur (2013), Holladay and LaRiverie (2014), Holladay and Soloway (2014), Linn et al. (2014), Knittel et al. (2014)
- Generation and emissions response to wind
 - Calloway and Fowlie (2009), Novan (2015), Cullen (2013), Kaffine et al. (2013), Amor et al. (2014), Dorsey-Palmateer (2014)
- To our knowledge, nothing in the literature has looked at both gas and wind on coal
 - Crucial to understand how the 2 interact many ongoing and proposed policies are likely to affect both gas and wind

Basic Dispatch Model

Basic Dispatch Model



Data

- Look at changes in unit-level daily capacity factor and emissions due to changes in natural gas prices and wind generation at the ISO scale
 - Primary constraint is availability of ISO wind generation has become available for different ISOs in different years after 2007
- Daily data from 2008 2013
- Merger of a substantial number of datasets
 - Hourly generation and emissions, aggregated to daily unit level
 - Daily gas prices, monthly coal prices plant level
 - Daily electricity prices and load Transmission-zone level
 - Daily wind generation ISO level
 - Capacity, regulatory status, control tech, age unit level

Data - ISO

- Who's in (>60% of wind)
 - ERCOT (Texas)
 - MISO (Upper Midwest)
 - PJM (Midatlantic+)
 - SPP
- Also did
 - NYISO (New York)
 - ISONE (New England)
- Who's out
 - CAISO (California), BPA (PacNW)
 Rest of WECC, Southeast

Summary Statistics

PJM

Mean-2008

0.597

0.618

0.381

0.094

247614

Mean

0.486

0.512

0.662

0.261

216029

CF

Ε

 \mathbf{P}^{R}

W

Load

	ERCOT			MISO		
	Mean	Mean-2008	Mean-2013	Mean	Mean-2008	Mean-2013
CF	0.73	0.788	0.706	0.542	0.62	0.495
Е	0.818	0.902	0.791	0.655	0.762	0.587
\mathbf{P}^{R}	0.496	0.222	0.553	0.519	0.306	0.579
W	0.694	0.416	0.896	0.625	0.232	0.969
Load	278198	268226	286543	84123	84944	85614

Mean-2013

0.435

0.466

0.716

0.403

215562

SPP

Mean-2013

0.614

0.698

0.465

0.697

56441

Mean-2008

0.707

0.826

0.287

0.162

53026

Mean

0.643

0.737

0.429

0.374

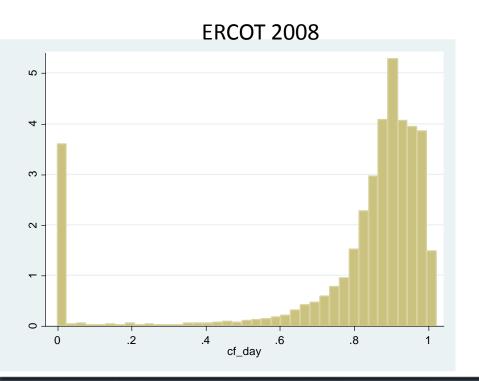
54246

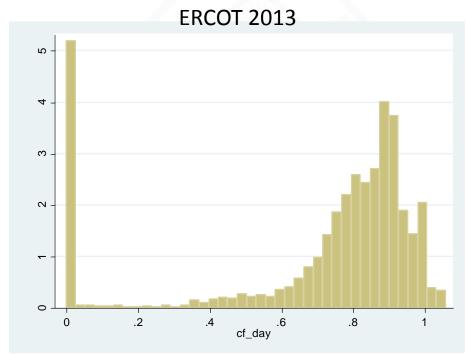
Estimation Strategy

Basic estimating equation:

$$y_{it} = \beta_1 P_{it}^R + \beta_2 (P_{it}^R)^2 + \beta_3 (P_{it}^R)^3 + \beta_4 W_t + \beta_5 W_t^2 + \beta_6 W_t^3 + \beta_7 W_t P_{it}^R + x_{it}' \gamma + d_{sy} + \alpha_i + \epsilon_{it}$$

$$y_{it}$$
: Capacity Factor (CF) or $\frac{CO_2}{Capacity}$


$$P_{it}^{R} = \left(\frac{P_{it}^{C}}{P_{it}^{NG}}\right)$$
, W_{t} -daily ISO wind generation (100's of GW)


 x'_{it} : Load, Load², age, RGGI; d_{st} : season-by-year FE

Estimation Challenges

- Using daily data, so many "0" observations
 - Standard OLS will be biased

Estimation Strategy

- Censored-quantile regression approach
 - Adaptation for panel data with FE's recently developed in Galvao, Lamarche, Lima (JASA, 2013)
 - Marginal effects relatively easy to interpret and easy to counterfactuals
 - Added benefit of allowing different responses by different quantiles
- Selection model using a Heckman 2-step approach
 - Method exists to adapt this to panel data with FE (Fernandez-Val and Villa (2011))
 - Difficulty in interpreting the marginal effects and doing counterfactuals → IMR is complex non-linear function of variables

Canacity Factors Posults (a - 0.50)

0.253**

0.007

-0.023

0.011**

-0.080**

55,014

30

 $(P^R)^3$

W

 W^2

 W^3

 $P^R * W$

Obs.

Units

Capacity ractors Results ($q = 0.50$)					
	ERCOT	MISO	РЈМ		
P^R	0.235	0.209**	-0.0543**		
$(P^R)^2$	-0.594*	-0.581***	-0.007		

0.264***

-0.028***

0.008

-0.005**

-0.017

349,316

204

SPP

0.049

-0.0751

0.00832

0.034*

-0.034

0.014

-0.189***

125,430

68

0.001

0.070***

-0.0001

-0.021

-0.120***

254,332

162

Actual

-0.018

(0.11)

-0.254***

(0.07)

Actual

-0.023**

(0.01)

-0.045***

(0.01)

ERCOT

2008

2013

 $\partial CF/\partial W$

2008

2013

Ma	rginal Effects	
$^{CF}/_{\partial P^R}$	ERCOT	

W2008

-0.018

(0.11)

-0.216***

(0.06)

P2008

-0.023**

(0.01)

-0.019**

(0.01)

MISO

MISO

Actual

-0.064**

(0.03)

-0.201***

(0.02)

Actual

-0.03***

(0.00)

-0.039**

(0.00)

W2008

-0.064**

(0.03)

-0.189***

(0.02)

P2008

-0.03***

(0.00)

-0.034***

(0.01)

PJM

PJM

Actual

-0.07**

(0.02)

-0.11***

(0.02)

Actual

0.023*

(0.01)

-0.027**

(0.01)

W2008

-0.07**

(0.02)

-0.073***

(0.02)

P2008

0.023*

(0.01)

0.014

(0.01)

SPP

SPP

Actual

-0.022

(0.04)

-0.147**

(0.05)

Actual

-0.03**

(0.01)

-0.077***

(0.01)

W2008

-0.022

(0.04)

-0.046**

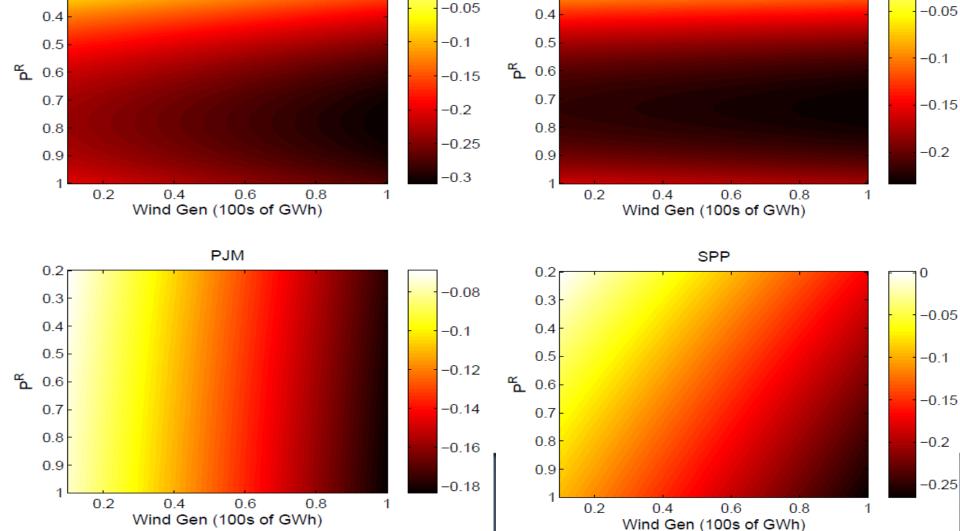
(0.02)

W2008

-0.03**

(0.01)

-0.043***


(0.01)

Marginal Effects – $\frac{\partial CF}{\partial P^R}$

ERCOT

0.2

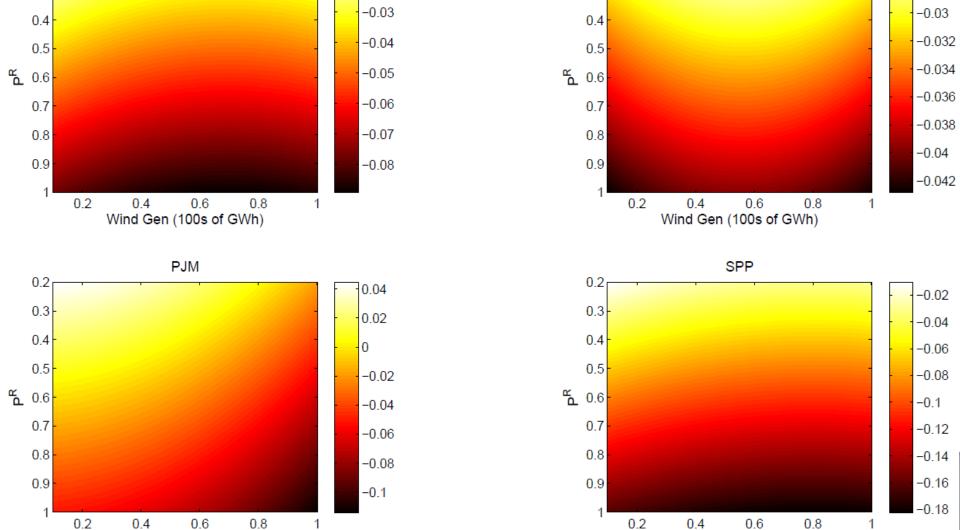
0.3

0

0.2

0.3

MISO


Marginal Effects – $\partial CF/\partial W$

-0.02

ERCOT

0.2

0.3

MISO

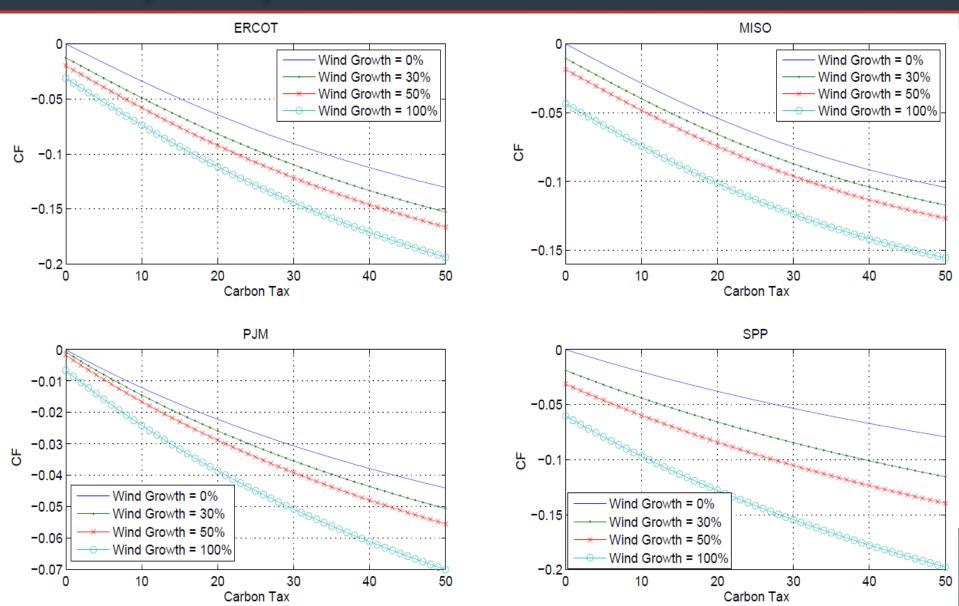
-0.028

0.2

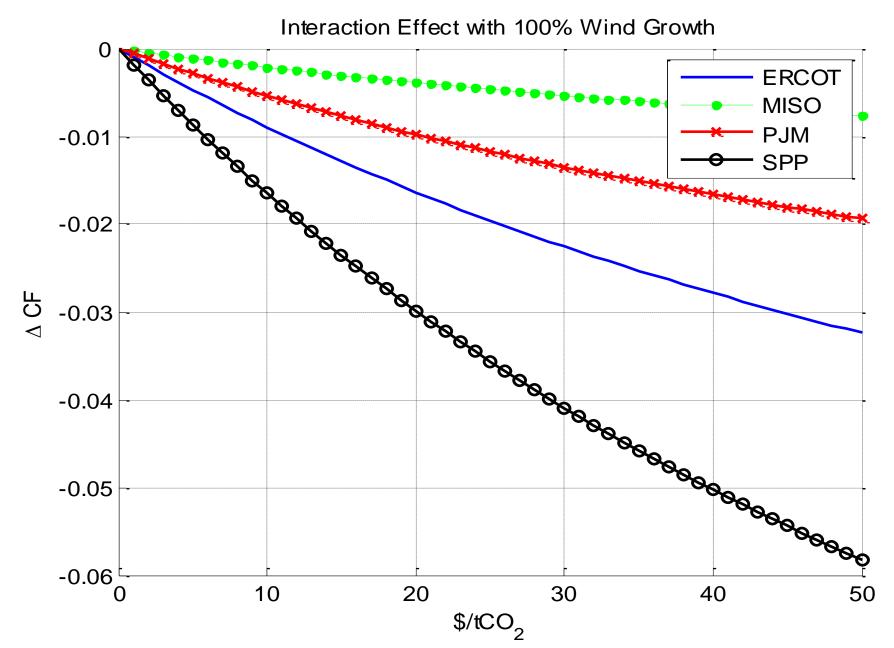
0.3

Quantile differences: $\frac{\partial CF}{\partial P^R}$

	ERCOT	MISO	РЈМ	SPP
Q = 0.25	-0.388	-0.204	-0.113	-0.107
	(0.072)	(0.023)	(0.017)	(0.056)
Q = 0.5	-0.254	-0.201	-0.110	-0.147
	(0.065)	(0.019)	(0.016)	(0.016)
Q = 0.75	-0.161	-0.174	-0.098	-0.125
	(0.070)	(0.019)	(0.013)	(0.046)


Additional Specifications

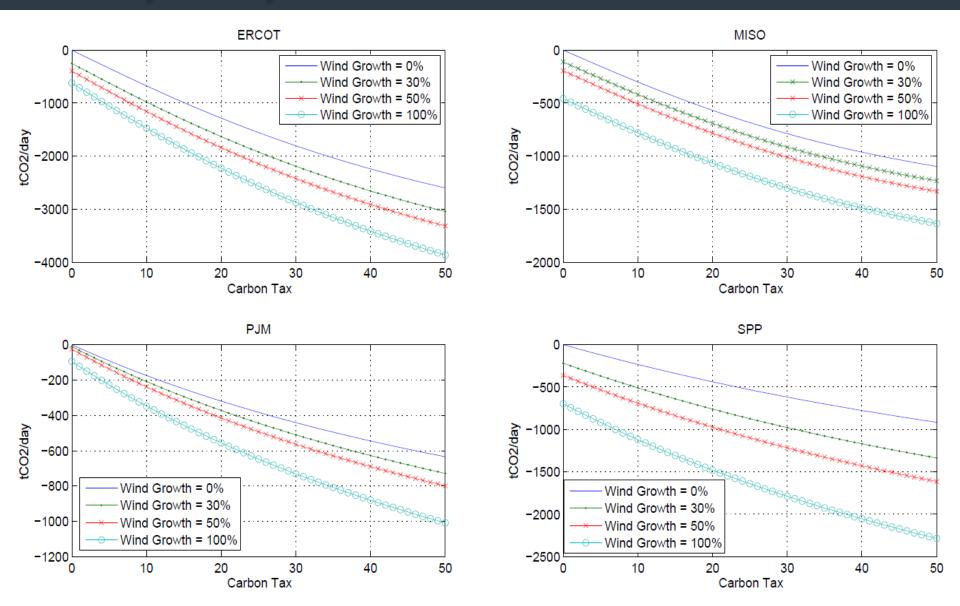
- Also considered specifications with:
 - Higher and lower order polynomials of W and P^R
 - Load from surrounding regions outside of ISO
 - Replacing daily wind generation with avg. hourly (wind/load)
- Results from these alternative specifications generally follow those shown here


Back of the Envelope Policy Analysis

- How much different would 2020 capacity factors/emissions for coal be under various carbon pricing and wind growth scenarios?
- Plot the difference between 2020 projected CF with no wind growth and no carbon price and projected CF's under carbon price and wind growth
- Based on based on 2020 projections from AEO 2014
 - Base case used here is $P^R = 0.51$, wind at 2013 levels, no carbon price

Policy Analysis

Policy Analysis - Interaction Effect Impact



Summary

- Increasing wind and falling NG prices both negatively impact generation from coal
- Importantly most regions show a significant interaction effect
- Marginal effect of Price Ratio and Wind on CF is negative and significant in most regions
 - Marginal effects generally grow over time
 - Marginal effect are now larger than they would have been if price ratio or wind generation were at 2008 levels in several regions
- CO₂ results generally follow that of CF
- Significant additional emission reductions from carbon price if wind generation continues to grow

Policy Analysis

